

Preface

Adeept is a technical service team of open source software and hardware.
Dedicated to applying the Internet and the latest industrial technology in open
source area, we strive to provide best hardware support and software service for
general makers and electronic enthusiasts around the world. We aim to create
infinite possibilities with sharing. No matter what field you are in, we can lead you
into the electronic world and bring your ideas into reality.

This is an entry-level learning kit for Arduino. Some common electronic
components and sensors are included. Through the learning, you will get a better
understanding of Arduino, and be able to make fascinating works based on
Arduino.

If you have any problems for learning, please contact us at support@adeept.com,
or please ask questions in our forum www.adeept.com. We will do our best to help
you solve the problem.

../../../AppData/Roaming/Microsoft/Word/support@adeept.com

Component List

NO. Name Picture Qty

1 Arduino 2560 Board 1

2 RC522 RFID Module 1

3 RFID ID Round Tag 1

4 RFID ID Card 1

5 Ultrasonic Distance Sensor 1

6 Slide Potentiometer Module 1

7 Rotary Encoder Module 1

8 Soil Moisture Sensor Module 1

9 CM Module 1

10 Servo 1

11 Joystick Module 1

12 IR Receiver HX1838 1

13 8X8 LED Matrix Module 1

14 Remote Controller Module 1

15 DHT-11 Sensor Module 1

16 DC Motor 1

17 L9110 Motor Driver 1

18 Relay Module 1

19 LCD1602 Module 1

20 7-segment Display 1

21 4-digit 7-segment Display 1

22 Active Buzzer 1

23 Passive Buzzer 1

24
Analog Temperature
Sensor(Thermistor) 2

25 Light Sensor(Photoresistor) 2

26 LED Bar Graph 1

27 4*4 Matrix Keyboard 1

28 Switch 2

29 RGB LED 1

30 Red LED 8

31 Green LED 4

32 Yellow LED 4

33 Blue LED 4

34 Resistor(220Ω) 16

35 Resistor(1KΩ) 10

36 Resistor(10KΩ) 5

37 Capacitor(104) 5

38 Capacitor(10uF) 2

39 Button(Large) 4

40 Button(Small) 4

41 Button Cap(Red) 1

42 Button Cap(White) 1

43 Button Cap(Blue) 2

44 NPN Transistor(8050) 2

45 PNP Transistor(8550) 2

46 Potentiometer(10KΩ) 2

47 1N4148 Diode 2

48 1N4001 Diode 2

49 9V Battery Clip 1

50 Breadboard 1

51 USB Cable 1

52 Male to Male Jumper Wires 40

53 Male to Female Jumper Wires 20

54
Female to Female Jumper

Wires 20

55 3-Pin Wires 2

56 4-Pin Wires 1

57 5-Pin Wires 2

58
2-Pin Female to Female

Wires 1

59 Band Resistor Card 1

Contents

About Arduino..- 1 -

About Processing... - 2 -

Getting Started with Ardublock.. - 3 -

Lesson 1 Blinking LED... - 5 -

Lesson 2 Active Buzzer..- 11 -

Lesson 3 Controlling an LED with a button...- 15 -

Lesson 4 Relay Module..- 20 -

Lesson 5 Serial Port.. - 23 -

Lesson 6 LED Flowing Lights..- 28 -

Lesson 7 LED bar graph display... - 31 -

Lesson 8 Breathing LED..- 35 -

Lesson 9 Controlling a RGB LED by PWM.. - 39 -

Lesson 10 Play the Music... - 42 -

Lesson 11 LCD1602 display.. - 46 -

Lesson 12 A Simple Voltmeter.. - 51 -

Lesson 13 7-segment display.. - 54 -

Lesson 14 A simple counter..- 58 -

Lesson 15 Controlling Servo motor.. - 61 -

Lesson 16 Using a thermistor to measure the temperature..........................- 64 -

Lesson 17 IR Remoter Controller.. - 67 -

Lesson 18 DHT-11 Sensor Module.. - 72 -

Lesson 19 Ultrasonic distance sensor... - 75 -

Lesson 20 4x4 matrix keyboard...- 78 -

Lesson 21 Controlling DC motor.. - 82 -

Lesson 22 Joystick Module..- 88 -

Lesson 23 Slide Potentiometer Module.. - 91 -

Lesson 24 8*8 LED Matrix Module.. - 94 -

Lesson 25 Photoresistor... - 97 -

Lesson 26 Soil Moisture Sensor Module... - 100 -

Lesson 27 Rotary Encoder...- 104 -

Lesson 28 Control a relay with IR remoter controller.................................... - 107 -

Lesson 29 Control a RGB LED with IR remoter controller............................ - 109 -

Lesson 30 RFID module.. - 111 -

Lesson 31 Control relay module with RFID module... - 116 -

Lesson 32 RFID Identification System.. - 118 -

Lesson 33 Move a cat...- 120 -

Lesson 34 Control the brightness of a photo with a photoresistor.......... - 130 -

Lesson 35 Controlling the 3D Model by PS2 Joystick...................................... - 137 -

Lesson 36 Adeept ardublock blinking LED.. - 140 -

Lesson 37 Adeept ardublock active buzzer.. - 143 -

Lesson 38 Adeept ardublock controlling an LED with a button................. - 147 -

Lesson 39 Adeept ardublock relay module...- 151 -

Lesson 40 Adeept ardublock serial port...- 155 -

Lesson 41 Adeept ardublock LED flowing lights.. - 159 -

Lesson 42 Adeept ardublock slide potentiometer module............................- 163 -

Lesson 43 Adeept ardublock LED bar graph display..- 167 -

Lesson 44 Adeept ardublock breathing LED.. - 172 -

Lesson 45 Adeept ardublock controlling a RGB LED by PWM..................... - 177 -

Lesson 46 Adeept ardublock LCD1602 display... - 182 -

Lesson 47 Adeept ardublock a simple voltmeter...- 187 -

Lesson 48 Adeept ardublock 7-segment display... - 192 -

Lesson 49 Adeept ardublock controlling servo motor.................................... - 200 -

Lesson 50 Adeept ardublock thermistor.. - 204 -

Lesson 51 Adeept ardublock ultrasonic distance sensor...............................- 209 -

Lesson 52 Adeept ardublock joystick module...- 213 -

Lesson 53 Adeept ardublock photoresistor.. - 218 -

Lesson 54 Adeept ardublock soil moisture sensor module.......................... - 223 -

- 1 -

About Arduino

What is Arduino?

Arduino is an open-source electronics platform based on easy-to-use
hardware and software. It's intended for anyone making interactive projects.

ARDUINO BOARD

Arduino senses the environment by receiving inputs from many sensors, and
affects its surroundings by controlling lights, motors, and other actuators.

ARDUINO SOFTWARE

You can tell your Arduino what to do by writing code in the Arduino
programming language and using the Arduino development environment.

Before the development of Arduino program, the first thing you have to do is to
install Arduino IDE software. The software provides you with the basic
development environment that is required for developing Arduino program.
You need the following URL to download Arduino IDE:
http://www.arduino.cc/en/Main/Software

For different operating system platforms, the way of using Arduino IDE is
different. Please refer to the following links:
Windows User：http://www.arduino.cc/en/Guide/Windows
Mac OS X User：http://www.arduino.cc/en/Guide/MacOSX
Linux User：http://playground.arduino.cc/Learning/Linux

For more detailed information about Arduino IDE, please refer to the following
link:
http://www.arduino.cc/en/Guide/HomePage

http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/Windows
http://www.arduino.cc/en/Guide/MacOSX
http://playground.arduino.cc/Learning/Linux
http://www.arduino.cc/en/Guide/HomePage

- 2 -

About Processing
What is Processing?

Processing is a programming language, development environment, and online
community. Since 2001, Processing has promoted software literacy within the
visual arts and visual literacy within technology. Initially created to serve as a
software sketchbook and to teach computer programming fundamentals
within a visual context, Processing evolved into a development tool for
professionals. Today, there are tens of thousands of students, artists,
designers, researchers, and hobbyists who use Processing for learning,
prototyping, and production.
» Free to download and open source
» Interactive programs with 2D, 3D or PDF output
» OpenGL integration for accelerated 3D
» For GNU/Linux, Mac OS X, and Windows
» Over 100 libraries extend the core software

PROCESSING SOFTWARE

Download Processing:
https://www.processing.org/download/
For more detailed information about Processing IDE, please refer to the
following link:
https://www.processing.org/reference/environment/

https://www.processing.org/download/
https://www.processing.org/reference/environment/

- 3 -

Getting Started with Ardublock

1. Download ardublock-all.jar:

https://www.adrive.com/public/SKNa2A/ardublock-beta-20140702.jar

2. In Arduino IDE, open menu”Arduino”->”Preference”

3. Find”Sketchbook location”

● In Mac,it’s by default “Documents/Arduino”under user’s home directory.

● In Linux,it’s by default “sketchbook”under user’s home directory.

● In Windows, it ’ s by default “ Documents/Arduino ” under user ’ s home
directory.

4 Copy ardublock-all.jar to tools/ArdublockTool/tool/ardublock-all.jar under
“Sketchbook loaction”, Assume the user is “Administrator”.

● In Mac,

https://www.adrive.com/public/SKNa2A/ardublock-beta-20140702.jar

- 4 -

/Users/Administrator/Documents/Arduino/tools/ArduBlockTool/tool/ardublo
ck-all.jar

●In Linux,

/home/Administrator/sketchbook/tools/ArduBlockTool/tool/ardublock-all.jar

●In Windows,

C:/Users/Administrator/Documents/Arduino/tools/ArduBlockTool/tool/ardub
lock-all.jar

* Be careful, the name of folder ”ArduBlockTool ” under tools folder is case
sensitive.

5. Start the Arduino IDE and find ArduBlock under the Tool menu.

- 5 -

- 6 -

Lesson 1 Blinking LED
Overview

In this tutorial, we will start the journey of learning Arduino MEGA 2560. In the
first lesson, we will learn how to make a LED blinking.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* 220Ω Resistor
- 1* LED
- 1* Breadboard
- 2* Jumper Wires

Principle

In this lesson, we will program the Arduino's GPIO output high(+5V) and low
level(0V), and then make the LED which is connected to the Arduino’s GPIO
flicker with a certain frequency.

1. What is the LED?

The LED is the abbreviation of light emitting diode. It is usually made of
gallium arsenide, gallium phosphide semiconductor materials. The LED has
two electrodes, a positive electrode and a negative electrode, it will light only
when a forward current passes, and it can be red, blue, green or yellow light,
etc. The color of light depends on the materials it was made.

In general, the drive current for LED is 5-20mA. Therefore, in reality it usually
needs an extra resistor for current limitation so as to protect the LED.

- 7 -

2. What is the resistor?

The main function of the resistor is to limit current. In the circuit, the character
‘R’ represents resistor, and the unit of resistor is ohm(Ω).

The band resistor is used in this experiment. A band resistor is one whose
surface is coated with some particular color through which the resistance can
be identified directly.

There are two methods for connecting LED to Arduino’s GPIO:

①

As shown in the schematic diagram above, the anode of LED is connected to
Arduino ’ s GPIO via a resistor, and the cathode of LED is connected to the
ground(GND). When the GPIO output high level, the LED is on; when the GPIO
output low level, the LED is off.

The size of the current-limiting resistor is calculated as follows: 5~20mA
current is required to make an LED on, and the output voltage of the Arduino
MEGA 2560’s GPIO is 5V, so we can get the resistance：

R = U / I = 5V / (5~20mA) = 250Ω~1KΩ

Since the LED has a certain resistance, thus we choose a 220ohm resistor.

②

As shown in the schematic diagram above, the anode of LED is connected to
VCC(+5V), and the cathode of LED is connected to the Arduino’s GPIO. When
the GPIO output low level, the LED is on; when the GPIO output high level, the
LED is off.

The experiment is based on method ①, we select Arduino's D8 pin to control
the LED. When the Arduino’s D8 pin is programmed to output high level, then
the LED will be on, next delay for the amount of time, and then programmed
the D8 pin to low level to make the LED off. Continue to perform the above
process, you can get a blinking LED.

- 8 -

3. Key functions:

● setup()

The setup() function is called when a sketch starts. Use it to initialize variables,
pin modes, start using libraries, etc. The setup function will only run once,
after each powerup or reset of the Arduino board.

●loop()

After creating a setup() function, which initializes and sets the initial values,
the loop() function does precisely what its name suggests, and loops
consecutively, allowing your program to change and respond. Use it to actively
control the Arduino board.

●pinMode()

Configures the specified pin to behave either as an input or an output.

As of Arduino 1.0.1, it is possible to enable the internal pullup resistors with
the mode INPUT_PULLUP. Additionally, the INPUT mode explicitly disables the
internal pullups.

●digitalWrite()

Write a HIGH or a LOW value to a digital pin.

If the pin has been configured as an OUTPUT with pinMode(), its voltage will be
set to the corresponding value: 5V (or 3.3V on 3.3V boards) for HIGH, 0V
(ground) for LOW.

If the pin is configured as an INPUT, digitalWrite() will enable (HIGH) or disable
(LOW) the internal pullup on the input pin. It is recommended to set the
pinMode() to INPUT_PULLUP to enable the internal pull-up resistor.

●delay()

Pauses the program for the amount of time (in miliseconds) specified as
parameter. (There are 1000 milliseconds in a second.)

Procedures

1. Build the circuit

- 9 -

2. Program
/***

File name: 01_blinkingLed.ino

Description: Lit LED, let LED blinks.

Website: www.adeept.com

E-mail: support@adeept.com

Author: Tom

Date: 2016/10/15

***/

int ledPin=8; //definition digital 8 pins as pin to control the LED

void setup()

{

pinMode(ledPin,OUTPUT); //Set the digital 8 port mode, OUTPUT:

Output mode

}

void loop()

{

digitalWrite(ledPin,HIGH); //HIGH is set to about 5V PIN8

delay(1000); //Set the delay time, 1000 = 1S

digitalWrite(ledPin,LOW); //LOW is set to about 5V PIN8

delay(1000); //Set the delay time, 1000 = 1S

}

3. Compile the program and upload to Arduino MEGA 2560 board
Now, you can see the LED is blinking.

- 10 -

- 11 -

Lesson 2 Active Buzzer
Overview

In this lesson, we will learn how to program the Arduino to make an active
buzzer sound.

Requirement

- 1* Arduino MEGA 2560
- 1* USB cable
- 1* Active buzzer
- 1* 1 kΩ Resistor
- 1* NPN Transistor (S8050)
- 1* Breadboard
- Several Jumper Wires

Principle

A buzzer or beeper is an audio signaling device. As a type of electronic buzzer
with integrated structure, which use DC power supply, are widely used in
computers, printers, photocopiers, alarms, electronic toys, automotive
electronic equipments, telephones, timers and other electronic products for
voice devices. Buzzers can be categorized as active and passive buzzers (See
the following pictures).

When you place the pins of buzzers upward, you can see that two buzzers are
different, the buzzer that green circuit board exposed is the passive buzzer.

In this study, the buzzer we used is active buzzer. Active buzzer will sound as
long as the power supply. We can program to make the Arduino output
alternating high and low level, so that the buzzer sounds.

- 12 -

A slightly larger current is needed to make a buzzer sound. However, the
output current of Arduino’s GPIO is weak, so we need a transistor to drive the
buzzer.

The main function of transistor is blowing up the voltage or current. The
transistor can also be used to control the circuit conduction or deadline. And
the transistor is divided into two kinds, one kind is NPN, for instance, the
S8050 we provided; another kind is PNP transistor such as the S8550 we
provided. The transistor we used is as shown in below:

There are two driving circuit for the buzzer:

Figure1 Figure2

Figure 1: Set the Arduino GPIO as a high level, the transistor S8050 will
conduct, and then the buzzer will sound; set the Arduino GPIO as low level, the
transistor S8050 will cut off, then the buzzer will stop.

- 13 -

Figure 2: Set the Arduino GPIO as low level, the transistor S8550 will conduct,
and the buzzer will sound; set the Arduino GPIO as a high level, the transistor
S8550 will cut off, then the buzzer will stop.

Procedures

1. Build the circuit

2. Program
3. Compile the program and upload to Arduino MEGA 2560 board
Now, you should be able to hear the sound of the buzzer.

- 14 -

Summary

By learning this lesson, we have mastered the basic principle of the buzzer and
the transistor. We also learned how to program the Arduino and then control
the buzzer. I hope you can use what you have learned in this lesson to do some
interesting things.

- 15 -

Lesson 3 Controlling an LED with a button
Overview

In this lesson, we will learn how to detect the state of a button, and then toggle
the state of LED based on the state of the button.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* Button
- 1* LED
- 1* 10KΩ Resistor
- 1* 220Ω Resistor
- 1* Breadboard
- Several Jumper Wires

Principle
1. Button

Buttons are a common component used to control electronic devices. They are
usually used as switches to connect or disconnect circuits. Although buttons
come in a variety of sizes and shapes, the one used in this experiment will be
a 12mm button as shown in the following pictures. Pins pointed out by the
arrows of same color are meant to be connected.

The button we used is a normally open type button. The two contacts of a
button is in the off state under the normal conditions, only when the button is
pressed they are closed.

The schematic diagram we used is as follows:

- 16 -

The button jitter must be happen in the process of using. The jitter waveform
is as the flowing picture:

Each time you press the button, the Arduino will think you have pressed the
button many times due to the jitter of the button. We must to deal with the
jitter of buttons before we use the button. We can through the software
programming method to remove the jitter of buttons, and you can use a
capacitance to remove the jitter of buttons. We introduce the software method.
First, we detect whether the level of button interface is low level or high level.
When the level we detected is low level, 5~10 MS delay is needed, and then
detect whether the level of button interface is low or high. If the signal is low,
we can confirm that the button is pressed once. You can also use a 0.1 uF
capacitance to clean up the jitter of buttons. The schematic diagram is shown
in below:

2. interrupt

Hardware interrupts were introduced as a way to reduce wasting the
processor's valuable time in polling loops, waiting for external events. They

- 17 -

may be implemented in hardware as a distinct system with control lines, or
they may be integrated into the memory subsystem.

3. Key functions:

●attachInterrupt(interrupt, ISR, mode)

Specifies a named Interrupt Service Routine (ISR) to call when an interrupt
occurs. Replaces any previous function that was attached to the interrupt.
Most Arduino boards have two external interrupts: numbers 0 (on digital pin 2)
and 1 (on digital pin 3).

Generally, an ISR should be as short and fast as possible. If your sketch uses
multiple ISRs, only one can run at a time, other interrupts will be ignored
(turned off) until the current one is finished. as delay() and millis() both rely on
interrupts, they will not work while an ISR is running. delayMicroseconds(),
which does not rely on interrupts, will work as expected.

Syntax
attachInterrupt(pin, ISR, mode)
Parameters
pin: the pin number
ISR: the ISR will be called when the interrupt occurs; this function must take
no parameters and return nothing. This function is sometimes referred to as
an interrupt service routine.
mode: defines when the interrupt should be triggered. Four constants are
predefined as valid values:

-LOW to trigger the interrupt whenever the pin is low,
-CHANGE to trigger the interrupt whenever the pin changes value
-RISING to trigger when the pin goes from low to high,
-FALLING for when the pin goes from high to low.

●digitalRead()

Reads the value from a specified digital pin, either HIGH or LOW.
Syntax
digitalRead(pin)
Parameters
pin: the number of the digital pin you want to read (int)
Returns
HIGH or LOW
●delayMicroseconds(us)

- 18 -

Pauses the program for the amount of time (in microseconds) specified as
parameter. There are a thousand microseconds in a millisecond, and a million
microseconds in a second.

Currently, the largest value that will produce an accurate delay is 16383. This
could change in future Arduino releases. For delays longer than a few thousand
microseconds, you should use delay() instead.

Syntax
delayMicroseconds(us)
Parameters
us: the number of microseconds to pause (unsigned int)
Returns
None

Procedures

1. Build the circuit

2. Program
3. Compile the program and upload to Arduino MEGA 2560 board
When you press the button, you can see the state of the LED will be toggled.
(ON->OFF，OFF->ON).

- 19 -

Summary

Through this lesson, you should have learned how to use the Arduino MEGA
2560 detects an external button state, and then toggle the state of LED relying
on the state of the button detected before.

- 20 -

Lesson 4 Relay Module
Introduction

The relay is an electronic and electrical component that controls large currents by small
currents. In the course of building an Arduino project, generally many large current or high
volume devices like solenoid valve, lamp and motor cannot be connected directly to digital
I/Os of the Arduino board. At this moment, a relay can save your project.

Components

- 1 * Arduino MEGA 2560
- 1 * Relay Module
- 1 * LED Module
- 1 * USB Cable
- 1 * 3-Pin Wires
- 3 * Hookup Wire Set
- 1 * Breadboard

Experimental Principle

The Fritzing image:

Pin definition:
S Digital Data Input
+ VCC1
- GND1

VCC1 VCC1
GND1 GND1
VCC2 VCC1
GND2 GND2

The schematic diagram:

- 21 -

This experiment is to control an LED to brighten and dim by a relay.

Experimental Procedures

Step 1: Build the circuit

Step 2: Program _04_Relay.ino
Step 3: Compile and download the sketch to the 2560 board.
Now you can see the LED on the LED Module flickers every 2s and can hear the sound of
relay closing and opening.

- 22 -

- 23 -

Lesson 5 Serial Port
Overview

In this lesson, we will program the Arduino MEGA 2560 to achieve function of
send and receive data through the serial port. The Arduino receiving data
which send from PC, and then controlling an LED according to the received
data, then return the state of LED to the PC's serial port monitor.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* LED
- 1* 220Ω Resistor
- 1* Breadboard
- Several Jumper Wires

Principle
1. Serial ports

Used for communication between the Arduino board and a computer or other
devices. All Arduino boards have at least one serial port (also known as a UART
or USART). It communicates on digital pins 0 (RX) and 1 (TX) as well as with
the computer via USB. Thus, if you use these functions, you cannot also use
pins 0 and 1 for digital input or output.

You can use the Arduino environment's built-in serial monitor to communicate
with an Arduino board. Click the serial monitor button in the toolbar and select
the same baud rate used in the call to begin().

To use these pins to communicate with your personal computer, you will need
an additional USB-to-serial adaptor, as they are not connected to the MEGA
2560's USB-to-serial adaptor. To use them to communicate with an external
TTL serial device, connect the TX pin to your device's RX pin, the RX to your
device's TX pin, and the ground of your MEGA 2560 to your device's ground.
(Don't connect these pins directly to an RS232 serial port; they operate at +/-
12V and can damage your Arduino board.)

2. Key function

●begin()

- 24 -

Sets the data rate in bits per second (baud) for serial data transmission. For
communicating with the computer, use one of these rates: 300, 1200, 2400,
4800, 9600, 14400, 19200, 28800, 38400, 57600, or 115200. You can,
however, specify other rates - for example, to communicate over pins 0 and 1
with a component that requires a particular baud rate.

Syntax
Serial.begin(speed)
Parameters
speed: in bits per second (baud) - long
Returns
nothing

●print()
Prints data to the serial port as human-readable ASCII text. This command can
take many forms. Numbers are printed using an ASCII character for each digit.
Floats are similarly printed as ASCII digits, defaulting to two decimal places.
Bytes are sent as a single character. Characters and strings are sent as is. For
example:
Serial.print(78) gives “78”
Serial.print(1.23456) gives “1.23”
Serial.print('N') gives “N”
Serial.print(“Hello world.”) gives “Hello world.”
An optional second parameter specifies the base (format) to use; permitted
values are BIN (binary, or base 2), OCT (octal, or base 8), DEC (decimal, or
base 10), HEX (hexadecimal, or base 16). For floating point numbers, this
parameter specifies the number of decimal places to use. For example:
Serial.print(78, BIN) gives “1001110”
Serial.print(78, OCT) gives “116”
Serial.print(78, DEC) gives “78”
Serial.print(78, HEX) gives “4E”
Serial.println(1.23456, 0) gives “1”
Serial.println(1.23456, 2) gives “1.23”
Serial.println(1.23456, 4) gives “1.2346”
You can pass flash-memory based strings to Serial.print() by wrapping them
with F(). For example :
Serial.print(F(“Hello World”))
To send a single byte, use Serial.write().
Syntax

- 25 -

Serial.print(val)
Serial.print(val, format)
Parameters
val: the value to print - any data type format: specifies the number base (for
integral data types) or number of decimal places (for floating point types)
Returns
byte print() will return the number of bytes written, though reading that
number is optional

●println()
Prints data to the serial port as human-readable ASCII text followed by a
carriage return character (ASCII 13, or '∖r') and a newline character (ASCII 10,
or '∖n'). This command takes the same forms as Serial.print().
Syntax
Serial.println(val)
Serial.println(val, format)
Parameters
val: the value to print - any data type
format: specifies the number base (for integral data types) or number of
decimal places (for floating point types)
Returns
byte
println() will return the number of bytes written, though reading that number
is optional
●read()
Reads incoming serial data. read() inherits from the Stream utility class.
Syntax
Serial.read()
Parameters
None
Returns
the first byte of incoming serial data available (or -1 if no data is available) - int

Procedures

1. Build the circuit

- 26 -

2. Program
3. Compile the program and upload to Arduino MEGA 2560 board
Open the port monitor, and then select the appropriate baud rate according to
the program.
Now, if you send a character‘1’or‘0’on the serial monitor, the state of LED will
be lit or gone out.

- 27 -

Summary

Through this lesson, you should have understood that the computer can send
data to Arduino MEGA 2560 via the serial port, and then control the state of
LED. I hope you can use your head to make more interesting things based on
this lesson.

- 28 -

Lesson 6 LED Flowing Lights
Overview

In the first class, we have learned how to make an LED blink by programming
the Arduino. Today, we will use the Arduino to control 8 LEDs, so that 8 LEDs
showing the result of flowing.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 8* LED
- 8* 220Ω Resistor
- 1* Breadboard
- Several Jumper Wires

Principle

The principle of this experiment is very simple. It is very similar with the first
class.

Key function:

●for statements

The for statement is used to repeat a block of statements enclosed in curly
braces. An increment counter is usually used to increment and terminate the
loop. The for statement is useful for any repetitive operation, and is often used
in combination with arrays to operate on collections of data/pins.

There are three parts to the for loop header:

for (initialization; condition; increment) {

//statement(s);
}

- 29 -

The initialization happens first and exactly once. Each time through the loop,
the condition is tested; if it's true, the statement block, and the increment is
executed, then the condition is tested again. When the condition becomes
false, the loop ends.

Procedures

1. Build the circuit

2. Program
3. Compile the program and upload to Arduino MEGA 2560 board
Now, you should see 8 LEDs are lit in sequence from the right green one to the

- 30 -

left, next from the left to the right one. And then repeat the above
phenomenon.

Summary

Through this simple and fun experiment, we have learned more skilled
programming about the Arduino. In addition, you can also modify the circuit
and code we provided to achieve even more dazzling effect.

- 31 -

Lesson 7 LED bar graph display
Overview

In this lesson, we will learn how to control a LED bar graph by programming
the Arduino.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* 10KΩ Potentiometer
- 10* 220Ω Resistor
- 1* LED Bar Graph
- 1* Breadboard
- Several Jumper Wires

Principle

The bar graph - a series of LEDs in a line, such as you see on an audio display
is a common hardware display for analog sensors. It's made up of a series of
LEDs in a row, an analog input like a potentiometer, and a little code in
between. You can buy multi-LED bar graph displays fairly cheaply. This tutorial
demonstrates how to control a series of LEDs in a row, but can be applied to
any series of digital outputs.

This tutorial borrows from the For Loop and Arrays tutorial as well as the
Analog Input tutorial.

The sketch works like this: first you read the input. You map the input value to
the output range, in this case ten LEDs. Then you set up a for loop to iterate
over the outputs. If the output's number in the series is lower than the mapped
input range, you turn it on. If not, you turn it off.

http://www.arduino.cc/en/Tutorial/Loop
http://www.arduino.cc/en/Tutorial/AnalogInput

- 32 -

The internal schematic diagram for the LED bar graph is shown below:

A potentiometer, informally a pot, is a three-terminal resistor with a sliding or
rotating contact that forms an adjustable voltage divider. If only two terminals
are used, one end and the wiper, it acts as a variable resistor or rheostat.

Procedures

1. Build the circuit

- 33 -

2. Program
3. Compile the program and upload to Arduino MEGA 2560 board
Now, when you turn the knob of the potentiometer, you will see that the
number of LED in the LED bar graph will be changed.

- 34 -

- 35 -

Lesson 8 Breathing LED
Overview

In this lesson, we will learn how to program the Arduino to generate PWM
signal. And use the PWM square-wave signal control an LED gradually
becomes brighter and then gradually becomes dark like the animal’s
breathing.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* LED
- 1* 220Ω Resistor
- 1* Breadboard
- Several Jumper Wires

Principle

Pulse Width Modulation, or PWM, is a technique for getting analog results with
digital means. Digital control is used to create a square wave, a signal switched
between on and off. This on-off pattern can simulate voltages in between full
on (5 Volts) and off (0 Volts) by changing the portion of the time the signal
spends on versus the time that the signal spends off. The duration of "on time"
is called the pulse width. To get varying analog values, you change, or
modulate, that pulse width. If you repeat this on-off pattern fast enough with
an LED for example, the result is as if the signal is a steady voltage between 0
and 5v controlling the brightness of the LED.

In the graphic below, the green lines represent a regular time period. This
duration or period is the inverse of the PWM frequency. In other words, with
Arduino's PWM frequency at about 500Hz, the green lines would measure 2
milliseconds each. A call to analogWrite() is on a scale of 0 - 255, such that
analogWrite(255) requests a 100% duty cycle (always on), and
analogWrite(127) is a 50% duty cycle (on half the time) for example.

- 36 -

Key function:

●analogWrite()

Writes an analog value (PWM wave) to a pin. Can be used to light an LED at
varying brightnesses or drive a motor at various speeds. After a call to
analogWrite(), the pin will generate a steady square wave of the specified duty
cycle until the next call to analogWrite() (or a call to digitalRead() or
digitalWrite() on the same pin). You do not need to call pinMode() to set the
pin as an output before calling analogWrite().

Syntax
analogWrite(pin, value)
Parameters
pin: the pin to write to.
value: the duty cycle: between 0 (always off) and 255 (always on).
Returns
nothing

Procedures

1. Build the circuit

- 37 -

2. Program
3. Compile the program and upload to Arduino MEGA 2560 board.
Now, you should see the LED gradually from dark to brighter, and then from
brighter to dark, continuing to repeat the process, its rhythm like the animal's
breathing.

- 38 -

Summary

By learning this lesson, I believe that you have understood the basic principles
of the PWM, and mastered the PWM programming on the Arduino platform.

- 39 -

Lesson 9 Controlling a RGB LED by PWM
Overview

In this lesson, we will program the Arduino for RGB LED control, and make
RGB LED emits a various of colors of light.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* RGB LED
- 3* 220Ω Resistor
- 1* Breadboard
- Several Jumper Wires

Principle

RGB LEDs consist of three LEDs. Each LED actually has one red, one green and
one blue light. These three colored LEDs are capable of producing any color.
Tri-color LEDs with red, green, and blue emitters, in general using a four-wire
connection with one common lead (anode or cathode). These LEDs can have
either common anode or common cathode leads.

What we used in this experiment is the common anode RGB LED. The longest
pin is the common anode of three LEDs. The pin is connected to the +5V pin of
the Arduino, and the three remaining pins are connected to the Arduino’s D9,
D10, D11 pins through a current limiting resistor.

In this way, we can control the color of RGB LED by 3-channel PWM signal.

- 40 -

Procedures

1. Build the circuit

2. Program
3. Compile the program and upload to Arduino MEGA 2560 board
Now, you can see the RGB LED emitting red, green, blue, yellow, white and
purple light, then the RGB LED will be off, each state continues 1s, after
repeating the above procedure.

- 41 -

Summary

By learning this lesson, I believe you have already known the principle and the
programming of RGB LED. I hope you can use your imagination to achieve
even more cool ideas based on this lesson.

- 42 -

Lesson 10 Play the Music
Overview

In this lesson, we will program the Arduino to control a passive buzzer, and
then make the passive buzzer play music.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* NPN Transistor (8050)
- 1* 1KΩ Resistor
- 1* Passive Buzzer
- 1* LED
- 1* 220Ω Resistor
- 1* Breadboard
- Several Jumper Wires

Principle

As long as you send the square wave signals to a passive buzzer with different
frequency, then the passive buzzer will make different sound.

Key function:

●tone()

Generates a square wave of the specified frequency (and 50% duty cycle) on a
pin. A duration can be specified, otherwise the wave continues until a call to
noTone(). The pin can be connected to a piezo buzzer or other speaker to play
tones.

Only one tone can be generated at a time. If a tone is already playing on a

- 43 -

different pin, the call to tone() will have no effect. If the tone is playing on the
same pin, the call will set its frequency.

Use of the tone() function will interfere with PWM output on pins 3 and 11 (on
boards other than the Mega).

NOTE: if you want to play different pitches on multiple pins, you need to call
noTone() on one pin before calling tone() on the next pin.

Syntax

tone(pin, frequency)

tone(pin, frequency, duration)

Parameters

pin: the pin on which to generate the tone

frequency: the frequency of the tone in hertz - unsigned int

duration: the duration of the tone in milliseconds (optional) - unsigned long

Returns

nothing

●noTone()

Stops the generation of a square wave triggered by tone(). Has no effect if no
tone is being generated.

NOTE: if you want to play different pitches on multiple pins, you need to call
noTone() on one pin before calling tone() on the next pin.

Syntax

noTone(pin)

Parameters

pin: the pin on which to stop generating the tone

Returns

nothing

- 44 -

Procedures

1. Build the circuit

2. Program
3. Compile the program and upload to Arduino MEGA 2560 board
Now, you can hear the music of passive buzzer with blinking an LED.

- 45 -

- 46 -

Lesson 11 LCD1602 display
Overview

In this lesson, we will learn how to use a character display device—LCD1602
on the Arduino platform. First, we make the LCD1602 display a string "Hello
Geeks!" scrolling，then display “Adeept” and “www.adeept.com” static.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* LCD1602
- 1* 10KΩ Potentiometer
- 1* Breadboard
- Several Jumper Wires

Principle

The LCD1602 image:

Pin definition:
VSS GND
VDD VCC
VO Analog input
RS Digital input
RW Digital input
E Digital input
D0 Digital input
D1 Digital input
D2 Digital input
D3 Digital input
D4 Digital input
D5 Digital input
D6 Digital input
D7 Digital input
A VCC
K GND

http://www.adeept.com
query:potentiometer

- 47 -

LCD1602 is a kind of character LCD display. The LCD has a parallel interface,
meaning that the microcontroller has to manipulate several interface pins at
once to control the display. The interface consists of the following pins:

● A register select (RS) pin that controls where in the LCD's memory you're
writing data to. You can select either the data register, which holds what goes
on the screen, or an instruction register, which is where the LCD's controller
looks for instructions on what to do next.

● A Read/Write (R/W) pin that selects reading mode or writing mode

● An Enable pin that enables writing to the registers

● 8 data pins (D0-D7). The state of these pins (high or low) are the bits that
you're writing to a register when you write, or the values when you read.

● There's also a display contrast pin (Vo), power supply pins (+5V and Gnd)
and LED Backlight (Bklt+ and BKlt-) pins that you can use to power the LCD,
control the display contrast, and turn on or off the LED backlight respectively.

The process of controlling the display involves putting the data that form the
image of what you want to display into the data registers, then putting
instructions in the instruction register. The LiquidCrystal Library simplifies this
for you so you don't need to know the low-level instructions.

The Hitachi-compatible LCDs can be controlled in two modes: 4-bit or 8-bit.
The 4-bit mode requires seven I/O pins from the Arduino, while the 8-bit mode
requires 11 pins. For displaying text on the screen, you can do most everything
in 4-bit mode, so example shows how to control a 2x16 LCD in 4-bit mode.

A potentiometer , informally a pot, is a three-terminal resistor with a sliding or
rotating contact that forms an adjustable voltage divider. If only two terminals
are used, one end and the wiper, it acts as a variable resistor or rheostat.

Key function:

●begin()
Specifies the dimensions (width and height) of the display.
Syntax
lcd.begin(cols, rows)
Parameters
lcd: a variable of type LiquidCrystal
cols: the number of columns that the display has
rows: the number of rows that the display has

- 48 -

●setCursor()
Position the LCD cursor; that is, set the location at which subsequent text
written to the LCD will be displayed.
Syntax
lcd.setCursor(col, row)
Parameters
lcd: a variable of type LiquidCrystal
col: the column at which to position the cursor (with 0 being the first column)
row: the row at which to position the cursor (with 0 being the first row)

●scrollDisplayLeft()
Scrolls the contents of the display (text and cursor) one space to the left.
Syntax
lcd.scrollDisplayLeft()
Parameters
lcd: a variable of type LiquidCrystal
Example
scrollDisplayLeft() and scrollDisplayRight()
See also
scrollDisplayRight()

●print()
Prints text to the LCD.
Syntax
lcd.print(data)
lcd.print(data, BASE)
Parameters
lcd: a variable of type LiquidCrystal
data: the data to print (char, byte, int, long, or string)
BASE (optional): the base in which to print numbers: BIN for binary (base 2),
DEC for decimal (base 10), OCT for octal (base 8), HEX for hexadecimal (base
16).
Returns
byte
print() will return the number of bytes written, though reading that number is
optional

●clear()
Clears the LCD screen and positions the cursor in the upper-left corner.

- 49 -

Syntax
lcd.clear()
Parameters
lcd: a variable of type LiquidCrystal

Procedures

1. Build the circuit

2. Program
3. Compile the program and upload to Arduino MEGA 2560 board
Now, you can see the string "Hello Geeks!" is shown on the LCD1602 scrolling,
and then the string "Adeept" and "www.adeept.com" is displayed on the
LCD1602 static.

http://www.adeept.com

- 50 -

Summary

I believe that you have already mastered the driver of LCD1602 through this
lesson. I hope you can make something more interesting base on this lesson
and the previous lesson learned.

- 51 -

Lesson 12 A Simple Voltmeter
Overview

In this lesson, we will make a simple voltmeter with Arduino MEGA 2560 and
LCD1602, the range of this voltmeter is 0~5V. Then, we will measure the
voltage of the potentiometer’s adjustment end with the simple voltmeter and
display it on the LCD1602.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* LCD1602
- 2* Potentiometer
- 1* Breadboard
- Several Jumper Wires

Principle

The basic principle of this experiment: Converting the analog voltage that the
Arduino collected to digital quantity by the ADC(analog-to-digital converter)
through programming, then display the voltage on the LCD1602.

Connect the three wires from the potentiometer to your Arduino board. The
first goes to ground from one of the outer pins of the potentiometer. The
second goes from analog input 0 to the middle pin of the potentiometer. The
third goes from 5 volts to the other outer pin of the potentiometer.

By turning the shaft of the potentiometer, you change the amount of
resistance on either side of the wiper which is connected to the center pin of
the potentiometer. This changes the voltage at the center pin. When the
resistance between the center and the side connected to 5 volts is close to zero
(and the resistance on the other side is close to 10 kilohms), the voltage at the
center pin nears 5 volts. When the resistances are reversed, the voltage at the
center pin nears 0 volts, or ground. This voltage is the analog voltage that
you're reading as an input.

The Arduino has a circuit inside called an analog-to-digital converter that reads
this changing voltage and converts it to a number between 0 and 1023. When
the shaft is turned all the way in one direction, there are 0 volts going to the
pin, and the input value is 0. When the shaft is turned all the way in the
opposite direction, there are 5 volts going to the pin and the input value is

- 52 -

1023. In between, analogRead() returns a number between 0 and 1023 that
is proportional to the amount of voltage being applied to the pin.

Key functions:

● analogRead()
Reads the value from the specified analog pin. The Arduino MEGA 2560 board
contains a 16 channel (8 channels on the Mini and Nano, 6 on the UNO), 10-bit
analog to digital converter. This means that it will map input voltages between
0 and 5 volts into integer values between 0 and 1023. This yields a resolution
between readings of: 5 volts / 1024 units or, 0.0049 volts (4.9 mV) per unit.
The input range and resolution can be changed using analogReference().

It takes about 100 microseconds (0.0001 s) to read an analog input, so the
maximum reading rate is about 10,000 times a second.

Syntax
analogRead(pin)
Parameters
pin: the number of the analog input pin to read from (0 to 5 on most boards,
0 to 7 on the Mini and Nano, 0 to 15 on the Mega)
Returns
int (0 to 1023)

Procedures

1. Build the circuit

- 53 -

2. Program
3. Compile the program and upload to Arduino MEGA 2560 board.
Now, when you turning the shaft of the potentiometer, you will see the voltage
displayed on the LCD1602 will be changed.

Summary

The substance of voltmeter is reading analog voltage which input to ADC inside.
Through this course, I believe that you have mastered how to read analog
value and how to make a simple voltmeter with Arduino.

- 54 -

Lesson 13 7-segment display
Overview

In this lesson, we will program the Arduino to achieve the controlling of
segment display.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* 220Ω Resistor
- 1* 7-segment Display
- 1* Breadboard
- Several Jumper Wires

Principle

The seven-segment display is a form of electronic display device for displaying
decimal numerals that is an alternative to the more complex dot
matrix displays.

Seven-segment displays are widely used in digital clocks, electronic meters,
basic calculators, and other electronic devices that display numerical
information.

The seven-segment display is an 8-shaped LED display device composed of
eight LEDs (including a decimal point), these segments respectively named a,
b, c, d, e, f, g, dp.

The segment display can be divided into common anode and common cathode
segment display by internal connections.

- 55 -

When using a common anode LED, the common anode should to be connected
to the power supply (VCC); when using a common cathode LED, the common
cathode should be connected to the ground (GND).

Each segment of a segment display is composed of LED, so a resistor is needed
for protecting the LED.

A 7-segment display has seven segments for displaying a figure and a segment
for displaying a decimal point. If you want to display a number ‘1’, you should
only light the segment b and c.

Procedures

1. Build the circuit

- 56 -

2. Program
3. Compile the program and upload to Arduino MEGA 2560 board
Now, you should see the number 0~9 are displayed on the segment display.

- 57 -

Summary

Through this lesson, we have learned the principle and programming of
segment display. I hope you can combine the former course to modify the code
we provided in this lesson to achieve cooler originality.

- 58 -

Lesson 14 A simple counter
Overview

In this lesson, we will program the Arduino MEGA 2560 to make a simple
counter.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* 4-digit 7-segment Display
- 8* 220Ω Resistor
- 2* Button
- 1* Breadboard
- Several Jumper Wires

Principle

The 4-digit segment display is a form of electronic display device for displaying
decimal numerals that is an alternative to the more complex dot
matrix displays.

4-digit segment displays are widely used in digital clocks, electronic meters,
basic calculators, and other electronic devices that display numerical
information.

The 4-digit segment display is an 4*8-shaped LED display device composed of
32 LEDs (including four decimal points), these segments respectively named a,
b, c, d, e, f, g, h, dig1, dig2, dig3, dig4.

What we used in this experiment is a common cathode 4-digit 7-segment
display. Its internal structure is shown below:

- 59 -

The pin number is showing below:

Procedures

1. Build the circuit

- 60 -

2. Program
3. Compile the program and upload to Arduino MEGA 2560 board
Now, when you press one of the two buttons, the value displayed on the
4-digit 7-segment display will be changed.

Summary

By learning this lesson, you'll find that it is so easy to make a simple counter.

- 61 -

Lesson 15 Controlling Servo motor
Overview

In this lesson, we will introduce a new electronic device (Servo) to you, and tell
you how to control it with the Arduino MEGA 2560.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* Servo
- Several Jumper Wires

Principle
1. Servo motor

The servo motor have three wires: power, ground, and signal. The power wire
is typically red, and should be connected to the 5V pin on the Arduino board.
The ground wire is typically black or brown and should be connected to a
ground pin on the Arduino board. The signal pin is typically yellow, orange or
white and should be connected to a digital pin on the Arduino board. Note the
servo motor draw considerable power, so if you need to drive more than one or
two, you'll probably need to power them from a separate supply (i.e. not the
+5V pin on your Arduino). Be sure to connect the grounds of the Arduino and
external power supply together.

2. Servo library

This library allows an Arduino board to control RC (hobby) servo motors.
Servos have integrated gears and a shaft that can be precisely controlled.
Standard servos allow the shaft to be positioned at various angles, usually
between 0 and 180 degrees. Continuous rotation servos allow the rotation of
the shaft to be set to various speeds.

3. Key functions:

●attach()

Attach the Servo variable to a pin. Note that in Arduino 0016 and earlier, the
Servo library supports only servos on only two pins: 9 and 10.

Syntax

servo.attach(pin)

- 62 -

servo.attach(pin, min, max)

Parameters

servo: a variable of type Servo

pin: the number of the pin that the servo is attached to

min (optional): the pulse width, in microseconds, corresponding to the
minimum (0-degree) angle on the servo (defaults to 544)

max (optional): the pulse width, in microseconds, corresponding to the
maximum (180-degree) angle on the servo (defaults to 2400)

Procedures

1. Build the circuit

2. Program
3. Compile the program and upload to Arduino MEGA 2560 board
Now, you should see the servo rotate 180 degrees, and then rotate in opposite
direction.

- 63 -

Summary

By learning this lesson, you should have known that the Arduino provided a
servo library to control a servo. By using the servo library, you can easily
control a servo. Just enjoy your imagination and make some interesting
applications.

- 64 -

Lesson 16 Using a thermistor to measure
the temperature

Overview

In this lesson, we will learn how to use a thermistor to collect temperature by
programming Arduino. The information which a thermistor collects
temperature is displayed on the LCD1602.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* LCD1602
- 1* 10KΩ Potentiometer
- 1* 10KΩ Resistor
- 1* Thermistor
- 1* Breadboard
- Several Jumper Wires

Principle

A thermistor is a type of resistor whose resistance varies significantly with
temperature, more so than in standard resistors. We are using MF52 NTC
thermistor type. BTC thermistor is usually used as a temperature sensor.

MF52 thermistor key parameters:

B-parameter：3470.

25℃ resistor：10KΩ.

The relationship between the resistance of thermistor and temperature is as
follows:

: The resistance of thermistor at temperature T1

: The nominal resistance of thermistor at room temperature T2;

: 2.718281828459；

: It is one of the important parameters of thermistor;

: The Kelvin temperature that you want to measure.

- 65 -

: At the condition of room temperature 25 ℃ (298.15K), the standard
resistance of MF52 thermistor is 10K;

Kelvin temperature = 273.15 (absolute temperature) + degrees Celsius;

After transforming the above equation, we can get to the following formula:

Procedures

1. Build the circuit

2. Program
3. Compile the program and upload to Arduino MEGA 2560 board
Now, you can see the temperature which is collected by thermistor on the
LCD1602.

- 66 -

Summary

By learning this lesson, I believe you have learned to use a thermistor to
measure temperature. Next, you can use a thermistor to produce some
interesting applications.

- 67 -

Lesson 17 IR Remoter Controller
Overview

In this lesson, we will learn how to use an IR receiver to receive the remote
controller signal.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* IR Receiver HX1838
- 1* Remote Controller
- 1* Breadboard
- Several Jumper Wires

Principle

The IR receiver HX1838 can receive the infrared remote controller signals. The
IR receiver HX1838 has only three pins (a signal line, VCC and GND). It is easy
to connect with the Arduino.

The following is an infrared remote controller:

- 68 -

In this experiment, we program the Arduino to receive the infrared signal, and
then send the received data to the serial monitor. In the program, we used the
Arduino-IRremote-master library (We provided).

Note:

Before using this library, you have to delete the RobotIRremote directory in
your Arduino IDE directory, and delete the RobotIRremote directory in system
documents folder. For example, my system is windows 7, I need to delete the
RobotIRremote directory in C:\Program Files (x86)\Arduino\libraries and C:
\Users\SJG\Documents\Arduino\libraries. Otherwise, when you compile the
program, the compiler will complain.

Procedures

1. Build the circuit

- 69 -

2. Program
3. Compile the program and upload to Arduino MEGA 2560 board
Now, when you click one of the buttons on the remote controller, you will see
the button number of the remote controller is displayed on the serial
monitor.

- 70 -

- 71 -

Summary

By learning this lesson, I believe you have mastered the basic principle of the
infrared remote controlling.

- 72 -

Lesson 18 DHT-11 Sensor Module
Introduction

DHT11 is a composite digital thermal sensor that integrates temperature and humidity
detection. It can convert the temperature and humidity analog values into digital values via
corresponding sensitive components and built-in circuits, which can be directly read by
computer or other data collecting devices.

Components

- 1 * Arduino MEGA 2560
- 1 * DHT-11 Sensor Module
- 1 * LCD1602
- 1 * 10KΩ Potentiometer
- 1 * USB Cable
- 1 * 3-Pin Wires
- Several Jumper Wires

Experimental Principle

The Fritzing image:

Pin definition:
S Digital output
+ VCC
- GND

The schematic diagram:

In this experiment, by programming the Arduino, we read the temperature and humidity

- 73 -

data collected by the DHT11 module by pin D2 of the Arduino board and display it on
Serial Monitor via the serial port.

Experimental Procedures

Step 1: Build the circuit

Adeept UNO R3 Board DHT-11 Sensor Module
D2 S
5V +
GND -

Step 2: Program _18_DHT_11.ino
Step 3: Compile and download the sketch to the 2560 board.
Open the Serial Monitor in Arduino IDE and you will see the data of current temperature
and humidity displayed on the window.

- 74 -

- 75 -

Lesson 19 Ultrasonic distance sensor
Overview

In this lesson, we will learn how to measure the distance by the ultrasonic
distance sensor.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* Ultrasonic Distance Sensor
- 1* LCD1602
- 1* 10KΩ Potentiometer
- Several Jumper Wires

Principle

This recipe uses the popular Parallax PING ultrasonic distance sensor to
measure the distance of an object ranging from 2 cm to around 3 m.

Ultrasonic sensors provide a measurement of the time it takes for sound to
bounce off an object and return to the sensor. The “ping” sound pulse is
generated when the pingPin level goes HIGH for two micro-seconds. The
sensor will then generate a pulse that terminates when the sound returns. The
width of the pulse is proportional to the distance the sound traveled and the
sketch then uses the pulseIn function to measure that duration. The speed of
sound is 340 meters per second, which is 29 microseconds per centimeter. The
formula for the distance of the round trip is: RoundTrip = microseconds / 29.

So, the formula for the one-way distance in centimeters is: microseconds / 29
/ 2

- 76 -

Procedures

1. Build the circuit

2. Program
3. Compile the program and upload to Arduino MEGA 2560 board
Now, when you try to change the distance between the ultrasonic module and
the obstacles, you will find the distance value displayed on the LCD1602 will be
changed.

- 77 -

- 78 -

Lesson 20 4x4 matrix keyboard
Overview

In this lesson, we will learn how to use the matrix keyboard.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* 4x4 Matrix Keyboard
- Several Jumper Wires

Principle

In order to save the resources of the microcontroller port, we usually connect
the buttons in a matrix in an actual project.

The following is the schematics of 4x4 matrix keyboard:

- 79 -

In this tutorial, we use the ‘Keypad’ function library. Before programming,
please install the library.

Procedures

1. Build the circuit

2. Program
3. Compile the program and upload to Arduino MEGA 2560 board
Now, when you click one of the button on the 4x4 matrix keyboard, you will
see the corresponding key value will be displayed on the serial monitor.

- 80 -

- 81 -

- 82 -

Lesson 21 Controlling DC motor
Overview

In this comprehensive experiment, we will learn how to control the state of
DC motor with Arduino, and the state will be displayed through the LED at the
same time. The state of DC motor includes its forward, reverse, acceleration,
deceleration and stop.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* L9110 DC Motor Driver
- 1* DC Motor
- 4* Button
- 4* LED
- 4* 220Ω Resistor
- 1* 9V Battery Clip
- 1* Breadboard
- Several Jumper Wires

Principle
1. L9110

L9110 is a driver chip which is used to control and drive motor. The chip has
two TTL/CMOS compatible input terminals, and possesses the property of
anti-interference: it has high current driving capability, two output terminals
that can directly drive DC motor, each output port can provide 750~800mA
dynamic current, and its peak current can reach 1.5~2.0A; L9110 is widely
applied to various motor drives, such as toy cars, stepper motor, power
switches and other electric circuits.

javascript:void(0);
javascript:void(0);

- 83 -

OA, OB: These are used to connect the DC motor.

VCC: Power supply (+5V)

GND: The cathode of the power supply (Ground).

IA, IB: The input terminal of drive signal.

2. DC motor

A DC motor is any of a class of electrical machines that converts direct current
electrical power into mechanical power. The most common types rely on the
forces produced by magnetic fields. Nearly all types of DC motors have some
internal mechanism, either electromechanical or electronic, to periodically
change the direction of current flow in part of the motor. Most types produce
rotary motion; a linear motor directly produces force and motion in a straight
line.

- 84 -

DC motors were the first type widely used, since they could be powered from
existing direct-current lighting power distribution systems. A DC motor's
speed can be controlled over a wide range, using either a variable supply
voltage or by changing the strength of current in its field windings. Small DC
motors are used in tools, toys, and appliances. The universal motor can
operate on direct current but is a lightweight motor used for portable power
tools and appliances.

3. Key functions

●switch / case statements

Like if statements, switch…case controls the flow of programs by allowing
programmers to specify different code that should be executed in various
conditions. In particular, a switch statement compares the value of a variable
to the values specified in case statements. When a case statement is found
whose value matches that of the variable, the code in that case statement is
run.

The break keyword exits the switch statement, and is typically used at the
end of each case. Without a break statement, the switch statement will
continue executing the following expressions (“falling-through”) until a break,
or the end of the switch statement is reached.

Example

switch (var) {

case 1:

//do something when var equals 1

break;

case 2:

//do something when var equals 2

- 85 -

break;

default:

// if nothing else matches, do the default

// default is optional

}

Syntax

switch (var) {

case label:

// statements

break;

case label:

// statements

break;

default:

// statements

}

Parameters

var: the variable whose value to compare to the various cases label: a value
to compare the variable to

Procedures

1. Build the circuit (Make sure that the circuit connection is correct and then
power, otherwise it may cause the chips to burn.)

- 86 -

2. Program
3. Compile the program and upload to Arduino MEGA 2560 board
Press the btn1 button to stop or run the DC motor; press the btn2 button to
forward or reverse the DC motor; Press the btn3 button to accelerate the DC
motor; Press the btn4 button to decelerate the DC motor. When one of the
four buttons is pressed, their corresponding LED will be flashing which
prompts that the current button is clicked.

- 87 -

Summary

I think you must have grasped the basic theory and programming of the DC
motor after studying this experiment. You not only can forward and reverse it,
but also can regulate its speed. Besides, you can do some interesting
applications with the combination of this course and your prior knowledge.

- 88 -

Lesson 22 Joystick Module
Introduction

The PS2 Joystick Module is an input device. It consists of a station and the control knob
onside. It functions by sending angle or direction signals to the device controlled. The
button on the module can also be recognized by the microcontroller. The module
supports two-channel analog output, namely, x- and y-axis offset, and one-channel
digital output which indicates whether the user has pressed the button at z-axis or not.
The Joystick Module can be used to easily control the object to move in a
three-dimensional space. For example, it can be applied to control crane, truck,
electronic games, robots, etc.

Components

- 1 * Arduino MEGA 2560
- 1 * Joystick Module
- 1 * USB Cable
- 1 * 5-Pin Wires
- 1 * LCD1602
- 1 * 10KΩ Potentiometer
- Several Jumper Wires

Experimental Principle

The Fritzing image:

Pin definition:
z Digital key output
x Analog output(X)
y Analog output(Y)
+ VCC
- GND

The schematic diagram:

- 89 -

The experiment reads the status of the PS2 Joystick Module, send the data to and
display it on Serial Monitor.

Experimental Procedures

Step 1: Build the circuit

Step 2: Program _22_Joystick.ino

Step 3: Compile and download the sketch to the 2560 board.

Open Serial Monitor of the Arduino IDE. Press or pull the knob and you will see the value
of current status displayed on the window.

- 90 -

- 91 -

Lesson 23 Slide Potentiometer Module
Introduction

The similarity of the Slide Potentiometer Module and Potentiometer Module lies in:
holding three terminals; changing the resistance between the changeable terminal and
one end by changing the position of the slider. When the difference is: the Slide
Potentiometer usually has a larger power (and size) and can be used directly as a load
or connected in serial in the circuit of the load for current limiting. The potentiometer has
a smaller power and size, and generally used for voltage sampling in signal circuit.

Components

- 1 * Arduino MEGA 2560
- 1 * Slide Potentiometer Module
- 1 * USB Cable
- 1 * 3-Pin Wires

Experimental Principle

The Fritzing image:

Pin definition:
A Analog output
+ VCC
- GND

The schematic diagrams:

- 92 -

This experiment programs the Arduino board and collects analog quantities output from
the Slide Potentiometer module via pin A0 of the board, and converts them into digital
ones and display the value on the computer by serial port.

Experimental Procedures

Step 1: Build the circuit

Step 2: Program _23_SlidePotentiometerModule.ino
Step 3: Compile and download the sketch to the 2560 board.
Open the Serial Monitor in Arduino IDE. Move the slide of the Slide Potentiometer
module. Then the value output by port A of the module will be displayed on the Serial
Monitor. Slide it toward MIN and the value on the window will decrease; slide it toward
MAX, it will increase.

- 93 -

- 94 -

Lesson 24 8*8 LED Matrix Module
Introduction

The module drives the 8*8 LED Matrix Module by cascading two 74HC595 chips. The
module communicates with the microcontroller through SPI. It only occupies three I/Os
of the Arduino board and save precious ones for connecting other devices.

Components

- 1 * Arduino MEGA 2560
- 1 * 8*8 LED Matrix Module
- 1 * USB Cable
- 1 * 5-Pin Wires

Experimental Principle

The Fritzing image:

Pin definition:
DS Digital input

SH_CP Digital input
ST_CP Digital input

+ VCC
- GND

The schematic diagram:

- 95 -

In this experiment, by programming the Arduino board, we send the data to the dot
matrix module via the SPI interface and make the display scroll the characters “Adeept”.

Experimental Procedures

Step 1: Build the circuit

Step 2: Program _24_LEDMatrix.ino
Step 3: Compile and download the sketch to the 2560 board.
Now you can see on the dot matrix module, “Adeept” is displayed in the way of scrolling.

- 96 -

- 97 -

Lesson 25 Photoresistor
Overview

In this lesson, we will learn how to measure the light intensity by
photoresistor and make the measurement result displayed on the LCD1602.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* LCD1602
- 1* Photoresistor
- 1* 10KΩ Resistor
- 1* 10KΩ Potentiometer
- 1* Breadboard
- Several Jumper Wires

Principle

A photoresistor is a light-controlled variable resistor. The resistance of a
photoresistor decreases with the increasing incident light intensity; in other
words, it exhibits photoconductivity. A photoresistor can be applied in
light-sensitive detector circuits.

A photoresistor is made of a high resistance semiconductor. In the dark, a
photoresistor can have a resistance as high as a few megohms (MΩ), while in
the light, a photoresistor can have a resistance as low as a few hundred ohms.
If incident light on a photoresistor exceeds a certain frequency, photons
absorbed by the semiconductor give bound electrons enough energy to jump
into the conduction band. The resulting free electrons (and their hole partners)
conduct electricity, thereby lowering resistance. The resistance range and
sensitivity of a photoresistor can substantially differ among dissimilar devices.
Moreover, unique photoresistors may react substantially differently to
photons within certain wavelength bands.

The schematic diagram of this experiment is shown below:

query:potentiometer

- 98 -

With the increase of the light intensity, the resistance of photoresistor will be
decreased. The voltage of GPIO port in the above figure will become high.

Procedures

1. Build the circuit

2. Program
3. Compile the program and upload to Arduino MEGA 2560 board
Now, when you try to block the light towards the photoresistor, you will find
that the value displayed on the LCD1602 will be reduced. Otherwise, when
you use a powerful light to irradiate the photoresistor, the value displayed on
the LCD1602 will be increased.

- 99 -

Summary

By learning this lesson, we have learned how to detect surrounding light
intensity with the photoresistor. You can play your own wisdom, and make
more originality based on this experiment and the former experiment.

- 100 -

Lesson 26 Soil Moisture Sensor Module
Introduction

The Soil Moisture Sensor module is a simple sensor that measures the soil moisture.
When the soil moisture is insufficient, the output value of the sensor will decrease; on the
other hand, the value will increase when there’s enough water. The surface of the sensor
is gilded to prolong its life.
The CM Module consists of a comparator LM393 and extremely simple external circuits.
When using the module, you can set a threshold via the blue potentiometer beforehand.
When the input analog value reaches the threshold, the digital pin S will output a Low
level.

Components

- 1 * Arduino MEGA 2560
- 1 * Soil Moisture Sensor Module
- 1 * CM Module
- 1 * USB Cable
- 1 * 4-Pin Wires
- 1 * 2-Pin Female to Female Wires

Experimental Principle

The Fritzing images:

- 101 -

Pin definition:
Soil Moisture Sensor Module

1 Analog output
2 Analog output

CM Module
1 Analog output
2 Analog output
S Digital output
A Analog output
+ VCC
- GND

The schematic diagram:

The experiment uses the Soil Moisture Sensor module to collect data of soil moisture
and display it on Serial Monitor.

Experimental Procedures

Step 1: Build the circuit

- 102 -

Step 2: Program _26_SoilMoistureModule.ino
Step 3: Compile and download the sketch to the 2560 board.
Open Serial Monitor of the Arduino IDE. You will see the value of soil moisture collected
by the module displayed on the window.

- 103 -

- 104 -

Lesson 27 Rotary Encoder
Introduction

Rotary encoder switch, or small rotary encoder, is a switch electronic component that
has a set of regular and strictly-sequenced pulses. The module supports functions such
as increase, decrease, turn pages, etc., by collaboration with a microcontroller. For
example, in daily life you can see page turning of the mouse, menu selection, volume
adjustment of speakers, temperature adjustment of toaster, frequency adjustment of
medical equipment, etc.

Components

- 1 * Arduino MEGA 2560
- 1 * Rotary Encoder Module
- 1 * USB Cable
- 1 * 5-Pin Wires

Experimental Principle

The Fritzing image:

Pin definition:
S Digital output
B Digital output
A Digital output
+ VCC
- GND

The schematic diagram:

In this experiment, by programming the Arduino, we change a value by reading the
status of the Rotary Encoder. When we turn the knob of the Rotary Encoder clockwise,
the value on the window will increase; when we turn the knob counterclockwise, the

- 105 -

value will decrease. When we press down the switch, the value will be zeroed out.

Experimental Procedures

Step 1: Build the circuit

Step 2: Program _27_RotaryEncoderModule.ino
Step 3: Compile and download the sketch to the 2560 board.
Open the Serial Monitor in Arduino IDE. Turn or press down the knob of the Rotary
Encoder, the value on the window will increase, decrease, or be cleared.

- 106 -

- 107 -

Lesson 28 Control a relay with IR remoter
controller

Overview

In this experiment, we will program the Arduino MEGA 2560 to control a relay
by remote controller.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* IR Receiver HX1838
- 1* Remote Controller
- 1* Relay Module
- 1* Breadboard
- Several Jumper Wires

Principle

The remote IR receiver connected to the Arduino MEGA 2560 is used to
receive IR signal from remote controller. If you press the different keys(key 0
or key 1) on the remote controller, the relay state will be toggled.

Procedures

1. Build the circuit

- 108 -

2. Program
3. Compile the program and upload to Arduino MEGA 2560 board
Now, when you press the button ‘0’ on the remote controller, the LED is off.
When you press the button ‘1’ on the remote controller, the LED is on. At the
same time, you will hear the sound of relay toggling.

- 109 -

Lesson 29 Control a RGB LED with IR
remoter controller

Overview

In this lesson, we will use the remote IR receiver and the RGB to do an
experiment that the infrared remote controls the RGB.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* IR Receiver HX1838
- 1* Remote Controller
- 1* RGB LED
- 3* 220Ω Resistor
- 1* Breadboard
- Several Jumper Wires

Principle

If you press the different key with different number on the remote controller,
you will find the color of RGB LED will be changed. When you press the key
with number 0, the RGB LED will be off.

Procedures

1. Build the circuit

- 110 -

2. Program
3. Compile the program and upload to Arduino MEGA 2560 board

- 111 -

Lesson 30 RFID module
Overview

In this lesson, we will learn how to use RFID Module. We programmed the
Arduino 2560 to read the data which is acquired by the RFID module, and
then make the ID data displayed on the serial monitor.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* RFID-RC522 Module
- 1* RFID ID Round Tag
- 1* RFID ID Card
- 1* Battery holder
- Several Jumper Wires

Principle

RFID technology is used for a wide variety of applications including access
control, package identification, warehouse stock control, point-of-sale
scanning, retail antitheft systems, toll-road passes, surgical instrument
inventory, and even for identifying individual sheets of paper placed on a desk.
RFID tags are embedded in name badges, shipping labels, library books,
product tags and boxes; installed in aircraft; hidden inside car keys; and
implanted under the skin of animals or even people. RFID systems work on a
wide range of frequencies, have a variety of modulation and encoding
schemes, and vary from low-power passive devices with range of only a few
millimeters to active systems that work for hundreds of kilometers.

However, all RFID systems have the same basic two-part architecture: a
reader and a transponder. The reader is an active device that sends out a
signal and listens for responses, and the transponder (the part generally
called the “tag”) detects the signal from a reader and automatically sends
back a response containing its identity code.

A reader is shown in the following:

- 112 -

A transponder is shown in the following:

Different types of RFID tags fall into one of three broad categories: active,
passive, and battery-assisted passive.

Active tags are physically large because they require their own power supply
such as a battery. They can also have a very long range because the
availability of local power allows them to send high-powered responses that

- 113 -

can travel from tens of meters to hundreds of kilometers. An active tag is
essentially a combination of a radio receiver to detect the challenge, some
logic to formulate a response, and a radio transmitter to send back the
response. They can even have the challenge and response signals operate on
totally different frequencies. The downsides are the size of the tag, a high
manufacturing cost due to the number of parts required, and the reliance on
a battery that will go flat eventually.

Passive tags can be much smaller and cheaper than active tags because they
don’t require a local power supply and have much simpler circuitry. Instead of
supplying their own power, they leach all the power they need from the signal
sent by the reader. Early passive tags operated on the “Wiegand effect,”
which uses a specially formed wire to convert received electromagnetic
energy into radio-wave pulses. Some early passive RFID tags actually
consisted of nothing more than a number of very carefully formed wires made
from a combination of cobalt, iron, and vanadium, with no other parts at all.

Modern passive tags use a clever technique that uses current induced in their
antenna coil to power the electronics required to generate the response. The
response is then sent by modulating the reader’s own field, and the reader
detects the modulation as a tiny fluctuation in the voltage across the
transmitter coil. The result is that passive tags can be incredibly small and
extremely inexpensive: the antenna can be a simple piece of metal foil, and
the microchips are produced in such large quantities that a complete
RFID-enabled product label could cost only a few cents and be no thicker than
a normal paper label. Passive tags can theoretically last indefinitely because
they don’t contain a battery to go flat, but their disadvantage is a very short
operational range due to the requirement to leach power from the reader’s
signal, and lack of an actively powered transmitter to send back the response.

Passive tags typically operate over a range of a few millimeters up to a few
meters.

Tags can also have a variety of different modulation schemes, including AM,
PSK, and ASK, and different encoding systems. With so many incompatible
variations, it’s sometimes hard to know if specific tags and readers are
compatible. Generally speaking, each type of tag will only function on one
specific frequency, modulation scheme, and communications protocol.
Readers, on the other hand, are far more flexible and will often support a
range of modulation schemes and comms protocols, but are usually still

- 114 -

limited to just one frequency due to the tuning requirements of the coil.

Apart from the specific requirements for communicating with them, tags can
also have a number of different features. The most common passive tags
simply contain a hard-coded unique serial number and when interrogated by
a reader they automatically respond with their ID code. Most tags are
read-only so you can’t change the value they return, but some types of tags
are read/write and contain a tiny amount of rewritable storage so you can
insert data into them using a reader and retrieve it later. However, most uses
of RFID don’t rely on any storage within the tag, and merely use the ID code
of the tag as a reference number to look up information about it in an external
database or other system.

RFID tags are produced in a wide variety of physical form factors to suit
different deployment requirements. The most commonly seen form factor is a
flat plastic card the same size as a credit card, often used as an access control
pass to gain access to office buildings or other secure areas. The most
common form by sheer number produced, even though you might not notice
them, is RFID-enabled stickers that are commonly placed on boxes, packages,
and products. Key fob tags are also quite common, designed to be attached to
a keyring so they’re always handy for operating access control systems.

Procedures

1. Build the circuit

2. Program
3. Compile the program and upload to Adeept 2560 board
Now, when you close the ID card to the RFID reader and the ID number will
be sent to the serial monitor.

- 115 -

- 116 -

Lesson 31 Control relay module with RFID
module

Overview

In this lesson, we will learn how to use RFID Module. We programmed the
Arduino 2560 to read the data which is acquired by the RFID module, and
then make the ID data displayed on the serial monitor. We can control the
relay module with RFID module.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* RFID-RC522 Module
- 1* RFID ID Round Tag
- 1* RFID ID Card
- 1* Relay Module
- Several Jumper Wires

Procedures

1. Build the circuit

2. Program
3. Compile the program and upload to Adeept 2560 board
Now, when you close the ID card to the RFID reader, the ID number will be
sent to the serial monitor, and it will contral the relay module with RFID
module.

- 117 -

- 118 -

Lesson 32 RFID Identification System
Overview

In this lesson, we will learn how to use RFID Module. We programmed the
Arduino 2560 to read the data which is acquired by the RFID module, and
then make the ID data displayed on the LCD1602 and the serial monitor.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* RFID-RC522 Module
- 1* RFID ID Round Tag
- 1* RFID ID Card
- 1* LCD1602
- 1* 10KΩ Potentiometer
- 1* NPN Transistor (8050)
- 1* 1KΩ Resistor
- 1* Passive buzzer
- 1* Battery holder
- 1* Breadboard
- Several Jumper Wires

Procedures

1. Build the circuit

- 119 -

2. Program
3. Compile the program and upload to Adeept 2560 board
Now, when you close the ID card to the RFID reader, the buzzer will sound,
and the ID number will be sent to the serial monitor, and it will be also
displayed on the LCD1602.

- 120 -

Lesson 33 Move a cat
Overview

This is a simple interaction experiment for Arduino and Processing. We collect
the distance data by programming the Arduino 2560, and send the data to
the Processing via serial port, and then make a cat move according to the
distance data.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* Ultrasonic Distance Sensor
- 1* Breadboard
- Several Jumper Wires

Principle

The experiment is divided into two parts. The first is used to acquire the data
from ultrasonic module, another is used to process the data.

The distance data will be displayed on the screen with the form of
visualization. When the distance decreases, the cat close to the robot. On the
contrary, the cat move away from the robot

Note:

1. In this experiment, my Arduino 2560 board is connected to my computer
COM26, please adjust according to actual situation.

2. If the Processing has not running normally, you need to install the related
function libraries.

Arduino key function:

●write()

Writes binary data to the serial port. This data is sent as a byte or series of
bytes; to send the characters representing the digits of a number use the
print() function instead.

Syntax

Serial.write(val) Serial.write(str) Serial.write(buf, len)

Parameters

- 121 -

val: a value to send as a single byte

str: a string to send as a series of bytes

buf: an array to send as a series of bytes

len: the length of the buffer

Returns

byte

write() will return the number of bytes written, though reading that number
is optional

Processing key function:

●Name: size()

Description

Defines the dimension of the display window in units of pixels. The size()
function must be the first line of code, or the first code inside setup(). Any
code that appears before the size() command may run more than once,
which can lead to confusing results.

The system variables width and height are set by the parameters passed to
this function. If size() is not used, the window will be given a default size of
100x100 pixels.

Syntax

size(w, h)

size(w, h, renderer)

Parameters

w int: width of the display window in units of pixels

h int: height of the display window in units of pixels

renderer

String: Either P2D, P3D, or PDF

Returns

void

- 122 -

●Name: background()

Description

The background() function sets the color used for the background of the
Processing window. The default background is light gray. This function is
typically used within draw() to clear the display window at the beginning of
each frame, but it can be used inside setup() to set the background on the
first frame of animation or if the backgound need only be set once.

An image can also be used as the background for a sketch, although the
image's width and height must match that of the sketch window. Images
used with background() will ignore the current tint() setting. To resize an
image to the size of the sketch window, use image.resize(width, height).

It is not possible to use the transparency alpha parameter with background
colors on the main drawing surface. It can only be used along with a
PGraphics object and createGraphics().

Syntax

background(rgb)

background(rgb, alpha)

background(gray)

background(gray, alpha)

background(v1, v2, v3)

background(v1, v2, v3, alpha)

background(image)

Parameters

rgb int: any value of the color datatype

alpha float: opacity of the background

gray float: specifies a value between white and black

v1 float: red or hue value (depending on the current color mode)

v2 float: green or saturation value (depending on the current color
mode)

- 123 -

v3 float: blue or brightness value (depending on the current color
mode)

image PImage: PImage to set as background (must be same size as the
sketch window)

Returns

Void

●Name：loadImage()

Description

Loads an image into a variable of type PImage. Four types of images
(.gif, .jpg, .tga, .png) images may be loaded. To load correctly, images must
be located in the data directory of the current sketch.

Syntax

loadImage(filename)

loadImage(filename, extension)

Parameters

filename String: name of file to load, can be .gif, .jpg, .tga, or a handful of
other image types depending on your platform

extension String: type of image to load, for example "png", "gif", "jpg"

Returns

PImage

●Name: createFont()

Description

Dynamically converts a font to the format used by Processing from a .ttf
or .otf file inside the sketch's "data" folder or a font that's installed elsewhere
on the computer. If you want to use a font installed on your computer, use
the PFont.list() method to first determine the names for the fonts recognized
by the computer and are compatible with this function. Not all fonts can be
used and some might work with one operating system and not others. When
sharing a sketch with other people or posting it on the web, you may need to
include a .ttf or .otf version of your font in the data directory of the sketch

- 124 -

because other people might not have the font installed on their computer.
Only fonts that can legally be distributed should be included with a sketch.

The size parameter states the font size you want to generate. The smooth
parameter specifies if the font should be antialiased or not. The charset
parameter is an array of chars that specifies the characters to generate.

Syntax

createFont(name, size)

createFont(name, size, smooth)

createFont(name, size, smooth, charset)

Parameters

name String: name of the font to load

size float: point size of the font

smooth boolean: true for an antialiased font, false for aliased

charset char[]: array containing characters to be generated

Returns

PFont

●Name: fill()

Description

Sets the color used to fill shapes. For example, if you run fill(204, 102, 0), all
subsequent shapes will be filled with orange. This color is either specified in
terms of the RGB or HSB color depending on the current colorMode(). (The
default color space is RGB, with each value in the range from 0 to 255.)

When using hexadecimal notation to specify a color, use "#" or "0x" before
the values (e.g., #CCFFAA or 0xFFCCFFAA). The # syntax uses six digits to
specify a color (just as colors are typically specified in HTML and CSS). When
using the hexadecimal notation starting with "0x", the hexadecimal value
must be specified with eight characters; the first two characters define the
alpha component, and the remainder define the red, green, and blue
components.

- 125 -

The value for the "gray" parameter must be less than or equal to the current
maximum value as specified by colorMode(). The default maximum value is
255.

Syntax

fill(rgb)

fill(rgb, alpha)

fill(gray)

fill(gray, alpha)

fill(v1, v2, v3)

fill(v1, v2, v3, alpha)

Parameters

rgb int: color variable or hex value

alpha float: opacity of the fill

gray float: number specifying value between white and black

v1 float: red or hue value (depending on current color mode)

v2 float: green or saturation value (depending on current color mode)

v3 float: blue or brightness value (depending on current color mode)

Returns

void

●Name: textFont()

Description

Sets the current font that will be drawn with the text() function. Fonts must
be created for Processing with createFont() or loaded with loadFont() before
they can be used. The font set through textFont() will be used in all
subsequent calls to the text() function. If no size parameter is input, the font
will appear at its original size (the size in which it was created with the
"Create Font..." tool) until it is changed with textSize().

- 126 -

Because fonts are usually bitmapped, you should create fonts at the sizes that
will be used most commonly. Using textFont() without the size parameter will
result in the cleanest type.

With the default and PDF renderers, it's also possible to enable the use of
native fonts via the command hint(ENABLE_NATIVE_FONTS). This will
produce vector text in both on-screen sketches and PDF output when the
vector data is available, such as when the font is still installed, or the font is
created dynamically via the createFont() function (rather than with the
"Create Font..." tool).

Syntax

textFont(which)

textFont(which, size)

Parameters

which PFont: any variable of the type PFont

size float: the size of the letters in units of pixels

Returns

void

●Name: text()

Description

Draws text to the screen. Displays the information specified in the first
parameter on the screen in the position specified by the additional
parameters. A default font will be used unless a font is set with the textFont()
function and a default size will be used unless a font is set with textSize().
Change the color of the text with the fill() function. The text displays in
relation to the textAlign() function, which gives the option to draw to the left,
right, and center of the coordinates.

The x2 and y2 parameters define a rectangular area to display within and
may only be used with string data. When these parameters are specified,
they are interpreted based on the current rectMode() setting. Text that does
not fit completely within the rectangle specified will not be drawn to the
screen.

- 127 -

Note that Processing now lets you call text() without first specifying a PFont
with textFont(). In that case, a generic sans-serif font will be used instead.

Syntax

text(c, x, y)

text(c, x, y, z)

text(str, x, y)

text(chars, start, stop, x, y)

text(str, x, y, z)

text(chars, start, stop, x, y, z)

text(str, x1, y1, x2, y2)

text(num, x, y)

text(num, x, y, z)

Parameters

c char: the alphanumeric character to be displayed

x float: x-coordinate of text

y float: y-coordinate of text

z float: z-coordinate of text

chars char[]: the alphanumberic symbols to be displayed

start int: array index at which to start writing characters

stop int: array index at which to stop writing characters

x1 float: by default, the x-coordinate of text, see rectMode() for more info

y1 float: by default, the x-coordinate of text, see rectMode() for more info

x2 float: by default, the width of the text box, see rectMode() for more info

y2 float: by default, the height of the text box, see rectMode() for more info

num int, or float: the numeric value to be displayed

Returns

void

- 128 -

●Name: Serial

Description

Class for sending and receivinag data using the serial communication
protocol.

●Name: available()

Description

Returns the number of bytes available.

●Name: read()

Description

Returns a number between 0 and 255 for the next byte that's waiting in the
buffer. Returns -1 if there is no byte, although this should be avoided by first
cheacking available() to see if data is available.

Procedures

1. Build the circuit

2. Program
3. Compile the program and upload to Adeept 2560 board
4. Run processing software (Cat_UltrasonicDistanceSensor.pde)

- 129 -

- 130 -

Lesson 34 Control the brightness of a photo
with a photoresistor

Overview

This is an interesting interaction experiment for the Arduino and Processing.
We acquire the brightness by programming the Arduino 2560, and then
change the brightness of a photo.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* Light Sensor (Photoresistor)
- 1* 10KΩ Resistor
- 1* Breadboard
- Several Jumper Wires

Principle

The experiment is divided into two parts. The first is used to acquire the data
from Arduino, another is the used to process the data.

The Arduino 2560 board sends the brightness data to the Processing software
via serial port, and then the Processing software changes the brightness of a
image according to the data. When the photoresistor in a dark environment,
the brightness of the image will be decreased. In contrast, the brightness of
the image will be increased.

Note:

1. In this experiment, my Arduino 2560 board is connected to my computer
COM26, please adjust according to actual situation.

2. If the Processing has not running normally, you need to install the related
function libraries.

Arduino key function:

●map(value, fromLow, fromHigh, toLow, toHigh)

Description

Re-maps a number from one range to another. That is, a value of fromLow
would get mapped to toLow, a value of fromHigh to toHigh, values
in-between to values in-between, etc.

- 131 -

Does not constrain values to within the range, because out-of-range values
are sometimes intended and useful. The constrain() function may be used
either before or after this function, if limits to the ranges are desired.

Note that the “lower bounds” of either range may be larger or smaller than
the “upper bounds” so the map() function may be used to reverse a range of
numbers, for example

y = map(x, 1, 50, 50, 1);

The function also handles negative numbers well, so that this example

y = map(x, 1, 50, 50, -100);

is also valid and works well. The map() function uses integer math so will not
generate fractions, when the math might indicate that it should do so.
Fractional remainders are truncated, and are not rounded or averaged.

Parameters

value: the number to map

fromLow: the lower bound of the value's current range

fromHigh: the upper bound of the value's current range

toLow: the lower bound of the value's target range

toHigh: the upper bound of the value's target range

Returns

The mapped value.

Processing key function:

●Name: tint()

Description

Sets the fill value for displaying images. Images can be tinted to specified
colors or made transparent by including an alpha value.

To apply transparency to an image without affecting its color, use white as
the tint color and specify an alpha value. For instance, tint(255, 128) will
make an image 50% transparent (assuming the default alpha range of 0-255,
which can be changed with colorMode()).

- 132 -

When using hexadecimal notation to specify a color, use "#" or "0x" before
the values (e.g., #CCFFAA or 0xFFCCFFAA). The # syntax uses six digits to
specify a color (just as colors are typically specified in HTML and CSS). When
using the hexadecimal notation starting with "0x", the hexadecimal value
must be specified with eight characters; the first two characters define the
alpha component, and the remainder define the red, green, and blue
components.

The value for the gray parameter must be less than or equal to the current
maximum value as specified by colorMode(). The default maximum value is
255.

The tint() function is also used to control the coloring of textures in 3D.

Syntax

tint(rgb)

tint(rgb, alpha)

tint(gray)

tint(gray, alpha)

tint(v1, v2, v3)

tint(v1, v2, v3, alpha)

Parameters

rgb int: color value in hexadecimal notation

alpha float: opacity of the image

gray float: specifies a value between white and black

v1 float: red or hue value (depending on current color mode)

v2 float: green or saturation value (depending on current color mode)

v3 float: blue or brightness value (depending on current color mode)

Returns

void

Procedures

1. Build the circuit

- 133 -

2. Program
3. Compile the program and upload to Adeept 2560 board
4. Run processing software (Brightness_Photoresistor.pde)

- 134 -

- 135 -

- 137 -

Lesson 35 Controlling the 3D Model by PS2
Joystick

Overview

In this lesson, we will collect the state of a joystick by programming the
Arduino 2560 Board, and then send the data to the Processing through the
serial communication.

Components

- 1 * Arduino MEGA 2560
- 1 * USB Cable
- 1 * PS2 Joystick
- 1 * Breadboard
- Several jumper wires

Principle

The experiment consists of two parts: first, acquire the data from Arduino;
second, process the data.

Here use the Arduino 2560 board to collect data of the joystick state, and
upload the data to the computer through the serial port. The data will be
processed by Processing and shown with 3D image.

Note:

1. In this experiment, my Arduino 2560 board is connected to my computer
port COM26. But it may differ in your case. So please adjust it according to
your actual situation.

2. If the Processing does not run normally, you may need to install the related
function libraries.

Procedures

Step 1: Build the circuit

- 138 -

Step 2: Program
Step 3: Compile the program and upload to arduino 2560 board
Step 4: Run the Processing software (Processing_PS2Joystick.pde)
Move the joystick, and the 3D model will follow movement changes
accordingly on your computer.

- 139 -

- 140 -

Lesson 36 Adeept ardublock blinking LED

Overview

In this tutorial, we will start the journey of learning Arduino ardublock. In the
first lesson, we will learn how to make a LED blinking.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* 220Ω Resistor
- 1* LED
- 1* Breadboard
- 2* Jumper Wires

Principle

In this lesson, we will program the Arduino's GPIO output high(+5V) and low
level(0V), and then make the LED which is connected to the Arduino’s GPIO
flicker with a certain frequency.

Procedures

1. Build the circuit

2. Program

- 141 -

3. Compile the program and upload to Arduino MEGA 2560 board, code
programming interface will appear:

- 142 -

Now, you can see the LED is blinking.

- 143 -

Lesson 37 Adeept ardublock active buzzer
Overview

In this lesson, we will learn how to program the ardublock to make an active
buzzer sound.

Requirement

- 1* Arduino MEGA 2560
- 1* USB cable
- 1* Active buzzer
- 1* 1 kΩ Resistor
- 1* NPN Transistor (S8050)
- 1* Breadboard
- Several Jumper Wires

Principle

The main function of transistor is blowing up the voltage or current. The
transistor can also be used to control the circuit conduction or deadline. And
the transistor is divided into two kinds, one kind is NPN, for instance, the
S8050 we provided; another kind is PNP transistor such as the S8550 we
provided. The transistor we used is as shown in below:

There are two driving circuit for the buzzer:

- 144 -

Figure1 Figure2

Figure 1: Set the Arduino GPIO as a high level, the transistor S8050 will
conduct, and then the buzzer will sound; set the Arduino GPIO as low level, the
transistor S8050 will cut off, then the buzzer will stop.

Figure 2: Set the Arduino GPIO as low level, the transistor S8550 will conduct,
and the buzzer will sound; set the Arduino GPIO as a high level, the transistor
S8550 will cut off, then the buzzer will stop.

Procedures

1. Build the circuit

- 145 -

2. Program

3. Compile the program and upload to Arduino MEGA 2560 board, code
programming interface will appear:

- 146 -

Now, you should be able to hear the sound of the buzzer.

- 147 -

Lesson 38 Adeept ardublock controlling an
LED with a button

Overview

In this lesson, we will learn how to detect the state of a button, and then toggle
the state of LED based on the state of the button.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* Button
- 1* LED
- 1* 10KΩ Resistor
- 1* 220Ω Resistor
- 1* Breadboard
- Several Jumper Wires

Principle

Buttons are a common component used to control electronic devices. They are
usually used as switches to connect or disconnect circuits. Although buttons
come in a variety of sizes and shapes, the one used in this experiment will be
a 12mm button as shown in the following pictures. Pins pointed out by the
arrows of same color are meant to be connected.

The button we used is a normally open type button. The two contacts of a
button is in the off state under the normal conditions, only when the button is
pressed they are closed.

The schematic diagram we used is as follows:

- 148 -

Procedures

1. Build the circuit

2. Program

- 149 -

3. Compile the program and upload to Arduino MEGA 2560 board, code
programming interface will appear:

- 150 -

When you press the button, you can see the state of the LED will be toggled.
(ON->OFF，OFF->ON).

Summary

Through this lesson, you should have learned how to use the Arduino MEGA
2560 detects an external button state, and then toggle the state of LED relying
on the state of the button detected before.

- 151 -

Lesson 39 Adeept ardublock relay module
Introduction

The relay is an electronic and electrical component that controls large currents by small
currents. In the course of building an Arduino project, generally many large current or high
volume devices like solenoid valve, lamp and motor cannot be connected directly to digital
I/Os of the Arduino board. At this moment, a relay can save your project.

Components

- 1 * Arduino MEGA 2560
- 1 * Relay Module
- 1 * LED Module
- 1 * USB Cable
- 2 * 3-Pin Wires
- 3 * Hookup Wire Set
- 1 * Breadboard

Experimental Principle

The Fritzing image:

Pin definition:
S Digital Data Input
+ VCC1
- GND1

VCC1 VCC1
GND1 GND1
VCC2 VCC1
GND2 GND2

The schematic diagram:

- 152 -

This experiment is to control an LED to brighten and dim by a relay.

Experimental Procedures

Step 1: Build the circuit

Step 2: Program

- 153 -

3. Compile the program and upload to Arduino MEGA 2560 board, code
programming interface will appear:

- 154 -

Now you can see the LED flickers every 2s and can hear the sound of relay closing and
opening.

- 155 -

Lesson 40 Adeept ardublock serial port
Overview

In this lesson, we will program the Arduino MEGA 2560 to achieve function of
send and receive data through the serial port. The Arduino receiving data
which send from PC, and then controlling an LED according to the received
data, then return the state of LED to the PC's serial port monitor.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* LED
- 1* 220Ω Resistor
- 1* Breadboard
- Several Jumper Wires

Principle
Serial ports

Used for communication between the Arduino board and a computer or other
devices. All Arduino boards have at least one serial port (also known as a UART
or USART). It communicates on digital pins 0 (RX) and 1 (TX) as well as with
the computer via USB. Thus, if you use these functions, you cannot also use
pins 0 and 1 for digital input or output.

You can use the Arduino environment's built-in serial monitor to communicate
with an Arduino board. Click the serial monitor button in the toolbar and select
the same baud rate used in the call to begin().

To use these pins to communicate with your personal computer, you will need
an additional USB-to-serial adaptor, as they are not connected to the MEGA
2560's USB-to-serial adaptor. To use them to communicate with an external
TTL serial device, connect the TX pin to your device's RX pin, the RX to your
device's TX pin, and the ground of your MEGA 2560 to your device's ground.
(Don't connect these pins directly to an RS232 serial port; they operate at +/-
12V and can damage your Arduino board.)

Procedures

1. Build the circuit

- 156 -

2. Program

3. Compile the program and upload to Arduino MEGA 2560 board, code
programming interface will appear:

- 157 -

Open the port monitor, and then select the appropriate baud rate according to
the program.
Now, if you send a character‘1’or‘2’on the serial monitor, the state of LED will
be lit or gone out.

- 158 -

Summary

Through this lesson, you should have understood that the computer can send
data to Arduino MEGA 2560 via the serial port, and then control the state of
LED. I hope you can use your head to make more interesting things based on
this lesson.

- 159 -

Lesson 41 Adeept ardublock LED flowing
lights

Overview

In the first class, we have learned how to make an LED blink by programming
the Arduino 2560. Today, we will use the Arduino to control 8 LEDs, so that 8
LEDs showing the result of flowing.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 8* LED
- 8* 220Ω Resistor
- 1* Breadboard
- Several Jumper Wires

Principle

The principle of this experiment is very simple. It is very similar with the 36
class.

Procedures

1. Build the circuit

- 160 -

2. Program

3. Compile the program and upload to Arduino MEGA 2560 board, code
programming interface will appear:

- 161 -

Now, you should see 8 LEDs are lit in sequence from the right green one to
the left, next from the left to the right one. And then repeat the above
phenomenon.

- 162 -

Summary

Through this simple and fun experiment, we have learned more skilled
programming about the Arduino. In addition, you can also modify the circuit
and code we provided to achieve even more dazzling effect.

- 163 -

Lesson 42 Adeept ardublock slide
potentiometer module

Introduction

The similarity of the Slide Potentiometer Module and Potentiometer Module lies in:
holding three terminals; changing the resistance between the changeable terminal and
one end by changing the position of the slider. When the difference is: the Slide
Potentiometer usually has a larger power (and size) and can be used directly as a load
or connected in serial in the circuit of the load for current limiting. The potentiometer has
a smaller power and size, and generally used for voltage sampling in signal circuit.

Components

- 1 * Arduino MEGA 2560
- 1 * Slide Potentiometer Module
- 1 * USB Cable
- 1 * 3-Pin Wires

Experimental Principle

The Fritzing image:

Pin definition:
A Analog output
+ VCC
- GND

The schematic diagrams:

- 164 -

This experiment programs the Arduino board and collects analog quantities output from
the Slide Potentiometer module via pin A0 of the board, and converts them into digital
ones and display the value on the computer by serial port.

Experimental Procedures

Step 1: Build the circuit

Step 2: Program

- 165 -

3. Compile the program and upload to Arduino MEGA 2560 board, code
programming interface will appear:

Open the Serial Monitor in Arduino IDE. Move the slide of the Slide Potentiometer
module. Then the value output by port A of the module will be displayed on the Serial
Monitor. Slide it toward MIN and the value on the window will decrease; slide it toward
MAX, it will increase.

- 166 -

- 167 -

Lesson 43 Adeept ardublock LED bar graph
display

Overview

In this lesson, we will learn how to control a LED bar graph by programming
the Arduino MEGA 2560.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* Slide Potentiometer Module
- 10* 220Ω Resistor
- 1* LED Bar Graph
- 1* Breadboard
- Several Jumper Wires

Principle

The bar graph - a series of LEDs in a line, such as you see on an audio display
is a common hardware display for analog sensors. It's made up of a series of
LEDs in a row, an analog input like a potentiometer, and a little code in
between. You can buy multi-LED bar graph displays fairly cheaply. This
tutorial demonstrates how to control a series of LEDs in a row, but can be
applied to any series of digital outputs.

This tutorial borrows from the For Loop and Arrays tutorial as well as the
Analog Input tutorial.

The sketch works like this: first you read the input. You map the input value to
the output range, in this case ten LEDs. Then you set up a for loop to iterate
over the outputs. If the output's number in the series is lower than the
mapped input range, you turn it on. If not, you turn it off.

http://www.arduino.cc/en/Tutorial/Loop
http://www.arduino.cc/en/Tutorial/AnalogInput

- 168 -

The internal schematic diagram for the LED bar graph is shown below:

A potentiometer, informally a pot, is a three-terminal resistor with a sliding or
rotating contact that forms an adjustable voltage divider. If only two
terminals are used, one end and the wiper, it acts as a variable resistor or
rheostat.

Procedures

1. Build the circuit

- 169 -

2. Program

- 170 -

3. Compile the program and upload to Arduino MEGA 2560 board, code
programming interface will appear:

Now, when you turn the knob of the potentiometer, you will see that the
number of LED in the LED bar graph will be changed.

- 171 -

- 172 -

Lesson 44 Adeept ardublock breathing LED
Overview

In this lesson, we will learn how to program the Arduino to generate PWM
signal. And use the PWM square-wave signal control an LED gradually
becomes brighter and then gradually becomes dark like the animal’s
breathing.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* LED
- 1* 220Ω Resistor
- 1* Breadboard
- Several Jumper Wires

Principle

Pulse Width Modulation, or PWM, is a technique for getting analog results
with digital means. Digital control is used to create a square wave, a signal
switched between on and off. This on-off pattern can simulate voltages in
between full on (5 Volts) and off (0 Volts) by changing the portion of the time
the signal spends on versus the time that the signal spends off. The duration
of "on time" is called the pulse width. To get varying analog values, you
change, or modulate, that pulse width. If you repeat this on-off pattern fast
enough with an LED for example, the result is as if the signal is a steady
voltage between 0 and 5v controlling the brightness of the LED.

In the graphic below, the green lines represent a regular time period. This
duration or period is the inverse of the PWM frequency. In other words, with
Arduino's PWM frequency at about 500Hz, the green lines would measure 2
milliseconds each. A call to analogWrite() is on a scale of 0 - 255, such that
analogWrite(255) requests a 100% duty cycle (always on), and
analogWrite(127) is a 50% duty cycle (on half the time) for example.

- 173 -

Procedures

1. Build the circuit

- 174 -

2. Program

3. Compile the program and upload to Arduino MEGA 2560 board, code
programming interface will appear:

- 175 -

Now, you should see the LED gradually from dark to brighter, and then from
brighter to dark, continuing to repeat the process, its rhythm like the animal's
breathing.

- 176 -

Summary

By learning this lesson, I believe that you have understood the basic
principles of the PWM, and mastered the PWM programming on the Arduino
platform.

- 177 -

Lesson 45 Adeept ardublock controlling a
RGB LED by PWM

Overview

In this lesson, we will program the Arduino for RGB LED control, and make
RGB LED emits a various of colors of light.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* RGB LED
- 3* 220Ω Resistor
- 1* Breadboard
- Several Jumper Wires

Principle

RGB LEDs consist of three LEDs. Each LED actually has one red, one green
and one blue light. These three colored LEDs are capable of producing any
color. Tri-color LEDs with red, green, and blue emitters, in general using a
four-wire connection with one common lead (anode or cathode). These LEDs
can have either common anode or common cathode leads.

What we used in this experiment is the common anode RGB LED. The longest
pin is the common anode of three LEDs. The pin is connected to the +5V pin
of the Arduino, and the three remaining pins are connected to the Arduino’s
D9, D10, D11 pins through a current limiting resistor.

In this way, we can control the color of RGB LED by 3-channel PWM signal.

- 178 -

Procedures

1. Build the circuit

2. Program

- 179 -

- 180 -

3. Compile the program and upload to Arduino MEGA 2560 board, code
programming interface will appear:

Now, you can see the RGB LED emitting red, green, blue, yellow, white and
purple light, then the RGB LED will be off, each state continues 1s, after
repeating the above procedure.

- 181 -

Summary

By learning this lesson, I believe you have already known the principle and
the programming of RGB LED. I hope you can use your imagination to achieve
even more cool ideas based on this lesson.

- 182 -

Lesson 46 Adeept ardublock LCD1602
display

Overview

In this lesson, we will learn how to use a character display device—LCD1602
on the Arduino platform. First, we make the LCD1602 display a string
"**Hello Geeks!**" ， then display “ *****Adeept***** ” and
“*www.adeept.com*” static.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* LCD1602
- 1* 10KΩ Potentiometer
- 1* Breadboard
- Several Jumper Wires

Principle

The LCD1602 image:

Pin definition:
VSS GND
VDD VCC
VO Analog input
RS Digital input
RW Digital input
E Digital input
D0 Digital input
D1 Digital input
D2 Digital input
D3 Digital input
D4 Digital input
D5 Digital input
D6 Digital input
D7 Digital input

http://www.adeept.com
query:potentiometer

- 183 -

A VCC
K GND

LCD1602 is a kind of character LCD display. The LCD has a parallel interface,
meaning that the microcontroller has to manipulate several interface pins at
once to control the display. The interface consists of the following pins:

● A register select (RS) pin that controls where in the LCD's memory you're
writing data to. You can select either the data register, which holds what goes
on the screen, or an instruction register, which is where the LCD's controller
looks for instructions on what to do next.

● A Read/Write (R/W) pin that selects reading mode or writing mode

● An Enable pin that enables writing to the registers

● 8 data pins (D0-D7). The state of these pins (high or low) are the bits that
you're writing to a register when you write, or the values when you read.

● There's also a display contrast pin (Vo), power supply pins (+5V and Gnd)
and LED Backlight (Bklt+ and BKlt-) pins that you can use to power the LCD,
control the display contrast, and turn on or off the LED backlight respectively.

The process of controlling the display involves putting the data that form the
image of what you want to display into the data registers, then putting
instructions in the instruction register. The LiquidCrystal Library simplifies this
for you so you don't need to know the low-level instructions.

The Hitachi-compatible LCDs can be controlled in two modes: 4-bit or 8-bit.
The 4-bit mode requires seven I/O pins from the Arduino, while the 8-bit
mode requires 11 pins. For displaying text on the screen, you can do most
everything in 4-bit mode, so example shows how to control a 2x16 LCD in
4-bit mode.

A potentiometer , informally a pot, is a three-terminal resistor with a sliding
or rotating contact that forms an adjustable voltage divider. If only two
terminals are used, one end and the wiper, it acts as a variable resistor or
rheostat.

Procedures

1. Build the circuit

- 184 -

2. Program

3. Compile the program and upload to Arduino MEGA 2560 board, code
programming interface will appear:

- 185 -

Now, you can see the string "**Hello Geeks!**" is shown on the LCD1602,
and then the string "*****Adeept*****" and "*www.adeept.com*" is
displayed on the LCD1602 static.

http://www.adeept.com

- 186 -

Summary

I believe that you have already mastered the driver of LCD1602 through this
lesson. I hope you can make something more interesting base on this lesson
and the previous lesson learned.

- 187 -

Lesson 47 Adeept ardublock a simple
voltmeter

Overview

In this lesson, we will make a simple voltmeter with Arduino MEGA 2560 and
LCD1602, the range of this voltmeter is 0~500. Then, we will measure the
voltage of the potentiometer’s adjustment end with the simple voltmeter and
display it on the LCD1602.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* LCD1602
- 2* Potentiometer
- 1* Breadboard
- Several Jumper Wires

Principle

The basic principle of this experiment: Converting the analog voltage that the
Arduino collected to digital quantity by the ADC(analog-to-digital converter)
through programming, then display the voltage on the LCD1602.

Connect the three wires from the potentiometer to your Arduino board. The
first goes to ground from one of the outer pins of the potentiometer. The
second goes from analog input 0 to the middle pin of the potentiometer. The
third goes from 5 volts to the other outer pin of the potentiometer.

By turning the shaft of the potentiometer, you change the amount of
resistance on either side of the wiper which is connected to the center pin of
the potentiometer. This changes the voltage at the center pin. When the
resistance between the center and the side connected to 5 volts is close to
zero (and the resistance on the other side is close to 10 kilohms), the voltage
at the center pin nears 5 volts. When the resistances are reversed, the
voltage at the center pin nears 0 volts, or ground. This voltage is the analog
voltage that you're reading as an input.

The Arduino has a circuit inside called an analog-to-digital converter that
reads this changing voltage and converts it to a number between 0 and 1023.
When the shaft is turned all the way in one direction, there are 0 volts going

- 188 -

to the pin, and the input value is 0. When the shaft is turned all the way in the
opposite direction, there are 5 volts going to the pin and the input value is
1023. In between, analogRead() returns a number between 0 and 1023 that
is proportional to the amount of voltage being applied to the pin.

Procedures

1. Build the circuit

2. Program

- 189 -

3. Compile the program and upload to Arduino MEGA 2560 board, code
programming interface will appear:

- 190 -

Now, when you turning the shaft of the potentiometer, you will see the
voltage displayed on the LCD1602 will be changed.

- 191 -

Summary

The substance of voltmeter is reading analog voltage which input to ADC
inside. Through this course, I believe that you have mastered how to read
analog value and how to make a simple voltmeter with Arduino.

- 192 -

Lesson 48 Adeept ardublock 7-segment
display

Overview

In this lesson, we will program the Arduino to achieve the controlling of
segment display.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* 220Ω Resistor
- 1* 7-segment Display
- 1* Breadboard
- Several Jumper Wires

Principle

The seven-segment display is a form of electronic display device for
displaying decimal numerals that is an alternative to the more complex dot
matrix displays.

Seven-segment displays are widely used in digital clocks, electronic meters,
basic calculators, and other electronic devices that display numerical
information.

The seven-segment display is an 8-shaped LED display device composed of
eight LEDs (including a decimal point), these segments respectively named a,
b, c, d, e, f, g, dp.

The segment display can be divided into common anode and common
cathode segment display by internal connections.

- 193 -

When using a common anode LED, the common anode should to be
connected to the power supply (VCC); when using a common cathode LED,
the common cathode should be connected to the ground (GND).

Each segment of a segment display is composed of LED, so a resistor is
needed for protecting the LED.

A 7-segment display has seven segments for displaying a figure and a
segment for displaying a decimal point. If you want to display a number ‘1’,
you should only light the segment b and c.

Procedures

1. Build the circuit

- 194 -

2. Program

- 195 -

- 196 -

- 197 -

3. Compile the program and upload to Arduino MEGA 2560 board, code
programming interface will appear:

- 198 -

Now, you should see the number 0~9 are displayed on the segment display.

- 199 -

Summary

Through this lesson, we have learned the principle and programming of
segment display. I hope you can combine the former course to modify the
code we provided in this lesson to achieve cooler originality.

- 200 -

Lesson 49 Adeept ardublock controlling
servo motor

Overview

In this lesson, we will introduce a new electronic device (Servo) to you, and
tell you how to control it with the Arduino MEGA 2560.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* Servo
- Several Jumper Wires

Principle
1. Servo motor

The servo motor have three wires: power, ground, and signal. The power
wire is typically red, and should be connected to the 5V pin on the Arduino
board. The ground wire is typically black or brown and should be connected to
a ground pin on the Arduino board. The signal pin is typically yellow, orange
or white and should be connected to a digital pin on the Arduino board. Note
the servo motor draw considerable power, so if you need to drive more than
one or two, you'll probably need to power them from a separate supply (i.e.
not the +5V pin on your Arduino). Be sure to connect the grounds of the
Arduino and external power supply together.

2. Servo library

This library allows an Arduino board to control RC (hobby) servo motors.
Servos have integrated gears and a shaft that can be precisely controlled.
Standard servos allow the shaft to be positioned at various angles, usually
between 0 and 180 degrees. Continuous rotation servos allow the rotation of
the shaft to be set to various speeds.

Procedures

1. Build the circuit

- 201 -

2. Program

3. Compile the program and upload to Arduino MEGA 2560 board, code
programming interface will appear:

- 202 -

Now, you should see the servo rotate 180 degrees, and then rotate in
opposite direction.

- 203 -

Summary

By learning this lesson, you should have known that the Arduino provided a
servo library to control a servo. By using the servo library, you can easily
control a servo. Just enjoy your imagination and make some interesting
applications.

- 204 -

Lesson 50 Adeept ardublock thermistor
Overview

In this lesson, we will learn how to use a thermistor to collect temperature by
programming Arduino. The information which a thermistor collects
temperature is displayed on the LCD1602.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* LCD1602
- 1* 10KΩ Potentiometer
- 1* 10KΩ Resistor
- 1* Thermistor
- 1* Breadboard
- Several Jumper Wires

Principle

A thermistor is a type of resistor whose resistance varies significantly with
temperature, more so than in standard resistors. We are using MF52 NTC
thermistor type. BTC thermistor is usually used as a temperature sensor.

MF52 thermistor key parameters:

B-parameter：3470.

25℃ resistor：10KΩ.

The relationship between the resistance of thermistor and temperature is as
follows:

: The resistance of thermistor at temperature T1

: The nominal resistance of thermistor at room temperature T2;

: 2.718281828459；

: It is one of the important parameters of thermistor;

: The Kelvin temperature that you want to measure.

: At the condition of room temperature 25 ℃ (298.15K), the standard

- 205 -

resistance of MF52 thermistor is 10K;

Kelvin temperature = 273.15 (absolute temperature) + degrees Celsius;

After transforming the above equation, we can get to the following formula:

Procedures

1. Build the circuit

2. Program

- 206 -

3. Compile the program and upload to Arduino MEGA 2560 board, code
programming interface will appear:

- 207 -

Now, you can see the temperature which is collected by thermistor on the
LCD1602.

- 208 -

Summary

By learning this lesson, I believe you have learned to use a thermistor to
measure temperature. Next, you can use a thermistor to produce some
interesting applications.

- 209 -

Lesson 51 Adeept ardublock ultrasonic
distance sensor

Overview

In this lesson, we will learn how to measure the distance by the ultrasonic
distance sensor.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* Ultrasonic Distance Sensor
- Several Jumper Wires

Principle

This recipe uses the popular Parallax PING ultrasonic distance sensor to
measure the distance of an object ranging from 2 cm to around 3 m.

Ultrasonic sensors provide a measurement of the time it takes for sound to
bounce off an object and return to the sensor. The “ping” sound pulse is
generated when the pingPin level goes HIGH for two micro-seconds. The
sensor will then generate a pulse that terminates when the sound returns.
The width of the pulse is proportional to the distance the sound traveled and
the sketch then uses the pulseIn function to measure that duration. The
speed of sound is 340 meters per second, which is 29 microseconds per
centimeter. The formula for the distance of the round trip is: RoundTrip =
microseconds / 29.

So, the formula for the one-way distance in centimeters is: microseconds / 29
/ 2

- 210 -

Procedures

1. Build the circuit

2. Program

- 211 -

3. Compile the program and upload to Arduino MEGA 2560 board, code
programming interface will appear:

- 212 -

Now, when you try to change the distance between the ultrasonic module and
the obstacles, you will find the distance value displayed on the LCD1602 will
be changed.

- 213 -

Lesson 52 Adeept ardublock joystick
module

Introduction

The PS2 Joystick Module is an input device. It consists of a station and the control knob
onside. It functions by sending angle or direction signals to the device controlled. The
button on the module can also be recognized by the microcontroller. The module
supports two-channel analog output, namely, x- and y-axis offset, and one-channel
digital output which indicates whether the user has pressed the button at z-axis or not.
The Joystick Module can be used to easily control the object to move in a
three-dimensional space. For example, it can be applied to control crane, truck,
electronic games, robots, etc.

Components

- 1 * Arduino MEGA 2560
- 1 * Joystick Module
- 1 * USB Cable
- 1 * 5-Pin Wires

Experimental Principle

The Fritzing image:

Pin definition:
z Digital key output
x Analog output(X)
y Analog output(Y)
+ VCC
- GND

The schematic diagram:

- 214 -

The experiment reads the status of the PS2 Joystick Module, send the data to and
display it on Serial Monitor.

Experimental Procedures

Step 1: Build the circuit

Step 2: Program

- 215 -

3. Compile the program and upload to Arduino MEGA 2560 board, code
programming interface will appear:

- 216 -

Open Serial Monitor of the Arduino IDE. Press or pull the knob and you will see the value
of current status displayed on the window.

- 217 -

- 218 -

Lesson 53 Adeept ardublock photoresistor
Overview

In this lesson, we will learn how to measure the light intensity by
photoresistor and make the measurement result displayed on the LCD1602.

Requirement

- 1* Arduino MEGA 2560
- 1* USB Cable
- 1* LCD1602
- 1* Photoresistor
- 1* 10KΩ Resistor
- 1* 10KΩ Potentiometer
- 1* Breadboard
- Several Jumper Wires

Principle

A photoresistor is a light-controlled variable resistor. The resistance of a
photoresistor decreases with the increasing incident light intensity; in other
words, it exhibits photoconductivity. A photoresistor can be applied in
light-sensitive detector circuits.

A photoresistor is made of a high resistance semiconductor. In the dark, a
photoresistor can have a resistance as high as a few megohms (MΩ), while in
the light, a photoresistor can have a resistance as low as a few hundred ohms.
If incident light on a photoresistor exceeds a certain frequency, photons
absorbed by the semiconductor give bound electrons enough energy to jump
into the conduction band. The resulting free electrons (and their hole partners)
conduct electricity, thereby lowering resistance. The resistance range and
sensitivity of a photoresistor can substantially differ among dissimilar devices.
Moreover, unique photoresistors may react substantially differently to
photons within certain wavelength bands.

The schematic diagram of this experiment is shown below:

query:potentiometer

- 219 -

With the increase of the light intensity, the resistance of photoresistor will be
decreased. The voltage of GPIO port in the above figure will become high.

Procedures

1. Build the circuit

2. Program

- 220 -

3. Compile the program and upload to Arduino MEGA 2560 board, code
programming interface will appear:

- 221 -

Now, when you try to block the light towards the photoresistor, you will find
that the value displayed on the LCD1602 will be reduced. Otherwise, when
you use a powerful light to irradiate the photoresistor, the value displayed on
the LCD1602 will be increased.

- 222 -

Summary

By learning this lesson, we have learned how to detect surrounding light
intensity with the photoresistor. You can play your own wisdom, and make
more originality based on this experiment and the former experiment.

- 223 -

Lesson 54 Adeept ardublock soil moisture
sensor module

Introduction

The Soil Moisture Sensor module is a simple sensor that measures the soil moisture.
When the soil moisture is insufficient, the output value of the sensor will decrease; on the
other hand, the value will increase when there’s enough water. The surface of the sensor
is gilded to prolong its life.
The CM Module consists of a comparator LM393 and extremely simple external circuits.
When using the module, you can set a threshold via the blue potentiometer beforehand.
When the input analog value reaches the threshold, the digital pin S will output a Low
level.

Components

- 1 * Arduino MEGA 2560
- 1 * Soil Moisture Sensor Module
- 1 * CM Module
- 1 * USB Cable
- 1 * 4-Pin Wires
- 1 * 2-Pin Female to Female Wires

Experimental Principle

The Fritzing images:

- 224 -

Pin definition:
Soil Moisture Sensor Module

1 Analog output
2 Analog output

CM Module
1 Analog output
2 Analog output
S Digital output
A Analog output
+ VCC
- GND

The schematic diagram:

The experiment uses the Soil Moisture Sensor module to collect data of soil moisture
and display it on Serial Monitor.

Experimental Procedures

Step 1: Build the circuit

- 225 -

Step 2: Program

3. Compile the program and upload to Arduino MEGA 2560 board, code
programming interface will appear:

- 226 -

Open Serial Monitor of the Arduino IDE. You will see the value of soil moisture collected
by the module displayed on the window.

- 227 -

- 228 -

	 Getting Started with Ardublock
	Lesson 3 Controlling an LED with a button
	Lesson 6 LED Flowing Lights
	Lesson 8 Breathing LED
	Lesson 9 Controlling a RGB LED by PWM
	Syntax
	Parameters
	Returns
	Syntax
	Parameters
	Returns

	Lesson 11 LCD1602 display
	Lesson 12 A Simple Voltmeter
	Lesson 13 7-segment display
	Lesson 21 Controlling DC motor
	Lesson 25 Photoresistor
	Lesson 36 Adeept ardublock blinking LED
	Lesson 38 Adeept ardublock controlling an LED with
	Lesson 41 Adeept ardublock LED flowing lights
	Lesson 44 Adeept ardublock breathing LED
	Lesson 45 Adeept ardublock controlling a RGB LED b
	Lesson 46 Adeept ardublock LCD1602 display
	Lesson 47 Adeept ardublock a simple voltmeter
	Lesson 48 Adeept ardublock 7-segment display
	Lesson 53 Adeept ardublock photoresistor

