
THE MOST COMPLETE STARTER KIT

TUTORIAL FOR MEGA 2560

V1.0.19.07.15

Our Company
Preface

Established in 2011, Elegoo Inc. is a thriving technology company dedicated to

research & development, production, and marketing of open-source hardware.

Located in Shenzhen, the Silicon Valley of China, we have grown to over 150+

employees with a 10,763+ square ft.factory.

Our product lines include DuPont wires, UNO R3 boards and complete starter kits

designed for customers of any level to learn Arduino knowledge. In addition, we also

sell Raspberry Pi accessories like TFT touch screens. Additionally, we plan to

expand our offerings to include other technologies, including products related to

3D printing. All of our products comply with international quality standards and

have been praised by our customers in a variety of different marketplaces

throughout the world.

Official website:

http://www.elegoo.com

US Amazon storefront: http://www.amazon.com/shops/A2WWHQ25ENKVJ1
CA Amazon storefront: http://www.amazon.ca/shops/A2WWHQ25ENKVJ1
UK Amazon storefront: http://www.amazon.co.uk/shops/AZF7WYXU5ZANW
DE Amazon storefront: http://www.amazon.de/shops/AZF7WYXU5ZANW
FR Amazon storefront: http://www.amazon.fr/shops/AZF7WYXU5ZANW
ES Amazon storefront: http://www.amazon.es/shops/AZF7WYXU5ZANW
IT Amazon storefront: http://www.amazon.it/shops/AZF7WYXU5ZANW

http://www.elegoo.com/

offer you excellent products and quality service as to meet your expectation and you

can reach out to us by simply drop a line at service@elegoo.com or

EUservice@elegoo.com. We look forward to hearing from you and any of your critical

comment or suggestion would be much valuable tous.

And any of problems and questions you have with our products will be promptly

replied by our experienced engineers within 12 hours (24hrs during holiday)

3 / 150

mailto:service@elegoo.com
mailto:EUservice@elegoo.com

Packing List

4 / 150

10 / 120

Content
Lesson 0 Installing IDE ... 12

Lesson 1 Add Libraries and Open Serial Monitor ... 25

Lesson 2 Blink .. 34

Lesson 3 LED .. 45

Lesson 4 RGB LED .. 52

Lesson 5 Digital Inputs .. 61

Lesson 6 Active buzzer .. 66

Lesson 7 Passive Buzzer ... 70

Lesson 8 Tilt Ball Switch .. 74

Lesson 9 LCD Display ... 78

Lesson 10 Thermometer .. 83

Lesson 11 Eight LED with 74HC595 ... 88

Lesson 12 The Serial Monitor .. 95

Lesson 13 Photocell ... 102

Lesson 14 Four Digital Seven Segment Display .. 107

Lesson 15 DC Motors .. 113

Lesson 16 Relay .. 118

11 / 120

12 / 120

Lesson 0 Installing IDE

Introduction

The Arduino Integrated Development Environment (IDE) is the software side ofthe

Arduino platform.

In this lesson, you will learn how to setup your computer to use Arduino and how

to set about the lessons thatfollow.

The Arduino software that you will use to program your Arduino is available for

Windows, Mac and Linux. The installation process is different for all three platforms

and unfortunately there is a certain amount of manual work to install the software.

STEP 1: Go to https://www.arduino.cc/en/Main/Software and find below page.

The version available at this website is usually the latest version, and the actual

version may be newer than the version in the picture.

http://www.arduino.cc/en/Main/Software

STEP2：Download the development software that is compatible with the operating

system of your computer. Take Windows as an example here.

Click Windows Installer.

Click JUST DOWNLOAD.

13 / 120

14 / 120

Installing Arduino (Windows)

Install Arduino with the exe. Installation package.

Click I Agree to see the following interface

Click Next

You can press Browse… to choose an installation path or directly type in the

directory you want.

15 /120

Click Install to initiate installation

Finally, the following interface appears, click Install to finish the installation.

Next, the following icon appears on thedesktop

16 / 120

17 / 120

Double-click to enter the desired development environment

You may directly choose the installation package for installation and skip the

contents below and jump to the next section. But if you want to learn some methods

other than the installation package, please continue to read the section.

Unzip the zip file downloaded, Double-click to open the program and enter the

desired development environment

18 / 120

However, this installation method needs separate installation of driver.

The Arduino folder contains both the Arduino program itself and the drivers that

allow the Arduino to be connected to your computer by a USB cable. Before we

launch the Arduino software, you are going to install the USB drivers.

Plug one end of your USB cable into the Arduino and the other into a USB socket on

your computer. The power light on the LED will light up and you may get a 'Found

New Hardware' message from Windows. Ignore this message and cancel any

attempts that Windows makes to try and install drivers automatically for you.

The most reliable method of installing the USB drivers is to use the Device Manager.

This is accessed in different ways depending on your version of Windows. In

Windows 7, you first have to open the Control Panel, then select the option to view

Icons, and you should find the Device Manager in the list.

Under ‘Other Devices’, you should see an icon for ‘unknown device’ with a little

yellow warning triangle next to it. This is your Arduino.

19 / 120

20 / 120

Right-click on the device and select the top menu option (Update Driver Software...).

You will then be prompted to either ‘Search Automatically for updated driver

software’ or ‘Browse my computer for driver software’. Select the option to browse

and navigate to the X\arduino1.8.0\drivers.

21 /120

Click 'Next' and you may get a security warning, if so, allow the software to be

installed. Once the software has been installed, you will get a confirmation message.

Windows users may skip the installation directions for Mac and Linux systems and

jump to Lesson 1. Mac and Linux users may continue to read this section.

Installing Arduino (Mac OS X)

Step One: Download Arduino Software (IDE)
·Open the URL:https://www.arduino.cc/en/Main/Software with browser

·Click Mac OSX 10.7 Lion or newer

https://www.arduino.cc/en/Main/Software

22 /120

·Click JUST DOWNLOAD

Download and Unzip the zip file, double click the Arduino. app to enter Arduino

IDE; the system will ask you to install Java runtime library if you don’t have it in

your computer. Once the installation is complete you can run the Arduino IDE.

23 /120

·arduino file is the Arduino application, just double click to open it

·Arduino IDE

24 /120

Installing Arduino (Linux)

You will have to use the “make install” command. If you are using the Ubuntu system, it is

recommended to install Arduino IDE from the Ubuntu Software Center.

You can refer to the following links which offer you the specific installation steps.

https://www.arduino.cc/en/guide/linux

25 /120

Lesson 1 Add Libraries and Open Serial Monitor

Installing Additional Arduino Libraries

Once you are comfortable with the Arduino software and using the built-in functions,

you may want to extend the ability of your Arduino with additional libraries.

What are Libraries?

Libraries are a collection of code that makes it easy for you to connect to a sensor,

display, module, etc. For example, the built-in Liquid Crystal library makes it easy

to talk to character LCD displays. There are hundreds of additional libraries

available on the Internet for download. The built-in libraries and some of these

additional libraries are listed in the reference. To use the additional libraries, you

will need to install them.

How to Install a Library

Using the Library Manager

To install a new library into your Arduino IDE you can use the Library Manager

(available from IDE version 1.8.0). Open the IDE and click to the "Sketch" menu and

then Include Library > Manage Libraries.

Then the library manager will open and you will find a list of libraries that are already

installed or ready for installation. In this example we will install the Bridge library.

Scroll the list to find it, then select the version of the library you want to install.

Sometimes only one version of the library is available. If the version selection menu

does not appear, don't worry: it is normal.

There are times you have to be patient with it, just as shown in the figure. Please refresh it

and wait.

26/120

Finally click on install and wait for the IDE to install the new library. Downloading

may take time depending on your connection speed. Once it has finished, an

Installed tag should appear next to the Bridge library. You can close the library

manager.

You can now find the new library available in the Include Library menu. If you want

to add your own library open a new issue on Github.

Importing a .zip Library

Libraries are often distributed as a ZIP file or folder. The name of the folder is the

name of the library. Inside the folder will be a .cpp file, a .h file and often a

keywords.txt file, examples folder, and other files required by the library. Starting

with version 1.0.5, you can install 3rd party libraries in the IDE. Do not unzip the

downloaded library, leave it as is.

In the Arduino IDE, navigate to Sketch > Include Library. At the top of the drop down

list, select the option to "Add .ZIP Library''.

27/120

28/ 120

You will be prompted to select the library you would like to add. Navigate to the .zip

file's location and open it.

Return to the Sketch > Import Library menu. You should now see the library at the

bottom of the drop-down menu. It is ready to be used in your sketch. The zip file

will have been expanded in the libraries folder in your Arduino sketches directory.

NB: the Library will be available to use in sketches, but examples for the library will

not be exposed in the File > Examples until after the IDE has restarted.

Those two are the most common approaches. MAC and Linux systems can be

handled likewise. The manual installation to be introduced below as an alternative

may be seldom used and users with no needs may skip it.

Manual installation

To install the library, first quit the Arduino application. Then uncompress the ZIP file

containing the library. For example, if you're installing a library called

"ArduinoParty", uncompressing ArduinoParty.zip. It should contain a folder

calledArduinoParty, with files like ArduinoParty.cpp and ArduinoParty.h inside. (If

the .cpp and .h files aren't in a folder, you'll need to create one. In this case, you'd

make a folder called "ArduinoParty" and move into it all the files that were in the

ZIP file, like ArduinoParty.cpp and ArduinoParty.h.)

Drag the Arduino Party folder into this folder (your libraries folder). Under Windows,

it will likely be called "My Documents\Arduino\libraries". For Mac users, it will likely

be called "Documents/Arduino/libraries". On Linux, it will be the "libraries" folder

in your sketchbook.

Your Arduino library folder should now look like this (onWindows):

My Documents\Arduino\libraries\ArduinoParty\ArduinoParty.cpp

My Documents\Arduino\libraries\ArduinoParty\ArduinoParty.h

MyDocuments\Arduino\libraries\ArduinoParty\examples

or like this (on Mac and Linux):

Documents/Arduino/libraries/ArduinoParty/ArduinoParty.cpp

Documents/Arduino/libraries/ArduinoParty/ArduinoParty.h

Documents/Arduino/libraries/ArduinoParty/examples

....

29/120

There may be more files than just the .cpp and .h files, just make sure they're all

there. (The library won't work if you put the .cpp and .h files directly into the

libraries folder or if they're nested in an extra folder. For example:

Documents\Arduino\libraries\ArduinoParty.cpp and

Documents\Arduino\libraries\ArduinoParty\ArduinoParty\ArduinoParty.cpp won't

work.)

Restart the Arduino application. Make sure the new library appears in the S k e t c h -

>Import Library menu item of the software. That's it! You've installed a library!

Arduino Serial Monitor (Windows, Mac, Linux)

The Arduino Integrated Development Environment (IDE) is the software side of the

Arduino platform. And, because using a terminal is such a big part of working with

Arduinos and other microcontrollers, they decided to include a serial terminal with

the software. Within the Arduino environment, this is called the Serial Monitor.

30/120

Making a Connection

Serial monitor comes with any and all version of the Arduino IDE. To open it, simply

click the Serial Monitor icon.

Selecting which port to open in the Serial Monitor is the same as selecting a port for

uploading Arduino code. Go to Tools -> Serial Port, and select the correct port.

Tips: Choose the same COM port that you have in Device Manager.

31/120

32 / 120

Once open, you should see something like this:

Settings

The Serial Monitor has limited settings, but enough to handle most of your serial

communication needs. The first setting you can alter is the baud rate. Click on the

baud rate drop-down menu to select the correct baud rate. (9600 baud)

Last, you can set the terminal to Auto scroll or not by checking the box in the bottom

left corner.

Pros

The Serial Monitor is a great quick and easy way to establish a serial connection with

your Arduino. If you’re already working in the Arduino IDE, there’s really no need to

open up a separate terminal to display data.

Cons

The lack of settings leaves much to be desired in the Serial Monitor, and, for

advanced serial communications, it may not do the trick.

33 / 120

32 / 223

Lesson 2 Blink

Overview

In this lesson, you will learn how to program your MEGA 2560 R3 controller board to

blink the Arduino’s built-in LED, and how to download programs by basic steps.

Component Required:

(1) x Elegoo Mega 2560 R3

Principle
The MEGA2560 R3 board has rows of connectors along both sides that are used to

connect to several electronic devices and plug-in 'shields' that extends its capability.

It also has a single LED that you can control from your sketches. This LED is built

onto the MEGA2560 R3 board and is often referred to as the 'L' LED as this is how it

is labeled on the board.

34/120

You may find that your MEGA 2560 R3 board's 'L' LED already blinks when you

connect it to a USB plug. This is because the boards are generally shipped with the

'Blink' sketch pre-installed.

In this lesson, we will reprogram the MEGA 2560 R3 board with our own Blink

sketch and then change the rate at which it blinks.

In Lesson 0, you set up your Arduino IDE and made sure that you could find the right

serial port for it to connect to your MEGA 2560 R3 board. The time has now come

to put that connection to the test and program your MEGA 2560 R3 board.

The Arduino IDE includes a large collection of example sketches that you can load

up and use. This includes an example sketch for making the 'L' LED blink.

Load the 'Blink' sketch that you will find in the IDE's menu system under File >

Examples > 01. Basics

35/120

When the sketch window opens, enlarge it so that you can see the entire sketch in

the window.

The example sketches included with the Arduino IDE are 'read-only'. That is, you can

upload them to an MEGA2560 R3 board, but if you change them, you cannot save

them as the same file.

Since we are going to change this sketch, the first thing you need to do is save your

own copy.

From the File menu on the Arduino IDE, select 'Save As..' and then save the sketch

with the name 'MyBlink'.

36/120

37/120

You have saved your copy of 'Blink' in your sketchbook. This means that if you ever

want to find it again, you can just open it using the File > Sketchbook menu option.

38/120

Attach your Arduino board to your computer with the USB cable and check that the

'Board Type' and 'Serial Port' are set correctly.

39/120

40/120

Note: The Board Type and Serial Port here are not necessarily the same as shown

in picture. If you are using 2560, then you will have to choose Mega 2560 as the

Board Type, other choices can be made in the same manner. And the Serial Port

displayed for everyone is different, despite COM 20 chosen here, it could be COM3

or COM4 on your computer. A right COM port is supposed to be COMX (arduino

XXX), which is by the certification criteria.

The Arduino IDE will show you the current settings for board at the bottom of the

window.

Click on the 'Upload' button. The second button from the left on the toolbar.

If you watch the status area of the IDE, you will see a progress bar and a series of

messages. At first, it will say 'Compiling Sketch...'. This converts the sketch into a

format suitable for uploading to the board.

Next, the status will change to 'Uploading'. At this point, the LEDs on the Arduino

should start to flicker as the sketch is transferred.

41/120

Finally, the staus will change to 'Done'.

The other message tells us that the sketch is using 928 bytes of the 32,256 bytes

available. After the 'Compiling Sketch..' stage you could get the following error

message:

It can mean that your board is not connected at all, or the drivers have not been

installed (if necessary) or that the wrong serial port is selected.

If you encounter this, go back to Lesson 0 and check your installation.

Once the upload has completed, the board should restart and start blinking.

Open the code

Note that a huge part of this sketch is composed of comments. These are not actual

program instructions; rather, they just explain how the program works. They are

there for your benefit.

Everything between /* and */ at the top of the sketch is a block comment; it explains

what the sketch is for.

42 /120

Single line comments start with // and everything up until the end of that line is

considered a comment.

The first line of code is:

int led = 13;

As the comment above it explains, this is giving a name to the pin that the LED is

attached to. This is 13 on most Arduinos, including the MEGA 2560 and Leonardo.

Next, we have the 'setup' function. Again, as the comment says, this is executed

when the reset button is pressed. It is also executed whenever the board resets for

any reason, such as power first being applied to it, or after a sketch has been

uploaded.

void setup() {

// initialize the digital pin as an output.

pinMode (led, OUTPUT);

}

Every Arduino sketch must have a 'setup' function, and the place where you might

want to add instructions of your own is between the { and the }.

In this case, there is just one command there, which, as the comment states tells

the Arduino board that we are going to use the LED pin as an output.

It is also mandatory for a sketch to have a 'loop' function. Unlike the 'setup' function

that only runs once, after a reset, the 'loop' function will, after it has finished running

its commands, immediately start again.

void loop() {

digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)

delay(1000); // wait for a second

digitalWrite(led, LOW); // turn the LED off by making the voltage LOW

delay(1000); // wait for a second

}

Inside the loop function, the commands first of all turn the LED pin on (HIGH), then

'delay' for 1000 milliseconds (1 second), then turn the LED pin off and pause for

another second.

You are now going to make your LED blink faster. As you might have guessed, the

key to this lies in changing the parameter in () for the 'delay' command.

43/120

This delay period is in milliseconds, so if you want the LED to blink twice as fast,

change the value from 1000 to 500. This would then pause for half a second each

delay rather than a whole second.

Upload the sketch again and you should see the LED start to blink more quickly.

44/120

Lesson 3 LED

Overview

In this lesson, you will learn how to change the brightness of an LED by using

different values of resistor.

Component Required:

(1) x Elegoo Mega 2560 R3

(1) x 5mm red LED

(1) x 220 ohm resistor

(1) x 1k ohm resistor

(1) x 10k ohm resistor

(2) x M-M wires (Male to Male jumper wires)

Component Introduction
BREADBOARD MB-102：

A breadboard enables you to prototype circuits quickly, without having to solder

the connections. Below is an example.

45/120

Breadboards come in various sizes and configurations. The simplest kind is just a

grid of holes in a plastic block. Inside are strips of metal that provide electrical

connection between holes in the shorter rows. Pushing the legs of two different

components into the same row joins them together electrically. A deep channel

running down the middle indicates that there is a break in connections there,

meaning, you can push a chip in with the legs at either side of the channel without

connecting them together. Some breadboards have two strips of holes running

along the long edges of the board that are separated from the main grid. These have

strips running down the length of the board inside and provide a way to connect a

common voltage. They are usually in pairs for +5 volts and ground. These strips are

referred to as rails and they enable you to connect power to many components or

points in the board.

While breadboards are great for prototyping, they have some limitations. Because

the connections are push-fit and temporary, they are not as reliable as soldered

connections. If you are having intermittent problems with a circuit, it could be due

to a poor connection on a breadboard.

LED:

LEDs make great indicator lights. They use very little electricity and they pretty much

last forever.

In this lesson, you will use perhaps the most common of all LEDs: a 5mm red LED.

5mm refers to the diameter of the LED. Other common sizes are 3mm and 10mm.

You cannot directly connect an LED to a battery or voltage source because 1) the

LED has a positive and a negative lead and will not light if placed the wrong way and

2) an LED must be used with a resistor to limit or 'choke' the amount of current

flowing through it; otherwise, it will burn out!

46/120

If you do not use a resistor with an LED, then it may well be destroyed almost

immediately, as too much current will flow through, heating it and destroying the

'junction' where the light is produced.

There are two ways to tell which is the positive lead of the LED and which the

negative.

Firstly, the positive lead is longer.

Secondly, where the negative lead enters the body of the LED, there is a flat edge

to the case of the LED.

If you happen to have an LED that has a flat side next to the longer lead, you should

assume that the longer lead is positive.

RESISTORS:

As the name suggests, resistors resist the flow of electricity. The higher the value of

the resistor, the more it resists and the less electrical current will flow through it.

We are going to use this to control how much electricity flows through the LED and

therefore, how brightly it shines.

But first, more about resistors...

The unit of resistance is called the Ohm, which is usually shortened to Ω the Greek

letter Omega. Because an Ohm is a low value of resistance (it doesn't resist much at

all), we also denote the values of resistors in kΩ (1,000 Ω) and MΩ (1,000,000 Ω).

These are called kilo-ohms and mega-ohms.

In this lesson, we are going to use three different values of resistor: 220Ω, 1kΩ and

10kΩ. These resistors all look the same, except that they have different colored

stripes on them. These stripes tell you the value of the resistor.

The resistor color code has three colored stripes and then a gold stripe at one end.

47/120

Unlike LEDs, resistors do not have a positive and negative lead. They can be

connected either way around.

If you find this approach method too complicated, you can read the color ring flag

on our resistors directly to determine its resistance value. Or you may use a digital

multimeter instead.

48/120

Connection

Schematic

49/120

Wiring diagram

The MEGA 2560 is a convenient source of 5 volts, which we will use to provide power

to the LED and the resistor. You do not need to do anything with your MEGA 2560,

except to plug it into a USB cable.

With the 220 Ω resistor in place, the LED should be quite bright. If you swap out the

220 Ω resistor for the 1kΩ resistor, then the LED will appear a little dimmer. Finally,

with the 10 kΩ resistor in place, the LED will be just about visible. Pull the red jumper

lead out of the breadboard and touch it into the hole and remove it, so that it acts

like a switch. You should just be able to notice the difference.

At the moment, you have 5V going to one leg of the resistor, the other leg of the

resistor going to the positive side of the LED and the other side of the LED going to

GND. However, if we moved the resistor so that it came after the LED, as shown

below, the LED will still light.

You will probably want to put the 220Ω resistor back in place.

It does not matter which side of the LED we put the resistor, as long as it is there

somewhere

50/120

Examplepicture

51/120

Lesson 4 RGB LED

Overview

RGB LEDs are a fun and easy way to add some color to your projects. Since they are

like 3 regular LEDs in one, how to use and connect them is not much different.

They come mostly in 2 versions: Common Anode or Common Cathode.

Common Anode uses 5V on the common pin, while Common Cathode connects to

ground.

As with any LED, we need to connect some resistors inline (3 total) so we can limit

the current being drawn.

In our sketch, we will start with the LED in the Red color state, then fade to Green,

then fade to Blue and finally back to the Red color. By doing this we will cycle

through most of the color that can be achieved.

Component Required:

(1) x Elegoo Mega2560 R3

(1) x 830 Tie Points Breadboard

(4) x M-M wires (Male to Male jumper wires)

(1) x RGB LED

(3) x 220 ohm resistors

52/120

Component Introduction

RGB:

At first glance, RGB (Red, Green and Blue) LEDs look just like regular LEDs. However,

inside the usual LED package, there are actually three LEDs, one red, one green and

yes, one blue. By controlling the brightness of each of the individual LEDs you can

mix pretty much any color you want.

We mix colors the same way you would mix paint on a palette - by adjusting the

brightness of each of the three LEDs. The hard way to do this would be to use

different value resistors (or variable resistors) as we did with in Lesson 2, but that's

a lot of work! Fortunately for us, MEGA 2560 R3 board has an analog Write

function that you can use with pins marked with a ~ to output a variable amount of

power to the appropriate LEDs.

The RGB LED has four leads. There is one lead going to the positive connection of

each of the single LEDs within the package and a single lead that is connected to all

three negative sides of the LEDs.

53/120

Here on the photographs you can see 4 electrode LED. Every separate pin for Green

or Blue or Red color is called Anode. You will always connect “+” to it. Cathode goes

to “-“ (ground). If you connect it other way round the LED will not light.

The common negative connection of the LED package is the second pin from the flat

side. It is also the longest of the four leads and will be connected to the ground.

Each LED inside the package requires its own 220Ω resistor to prevent too much

current flowing through it. The three positive leads of the LEDs (one red, one green

and one blue) are connected to MEGA 2560 output pins using these resistors.

54/120

COLOR:

The reason that you can mix any color you like by varying the quantities of red, green

and blue light is that your eye has three types of light receptor in it (red, green and

blue). Your eye and brain process the amounts of red, green and blue and convert

it into a color of the spectrum.

In a way, by using the three LEDs, we are playing a trick on the eye. This same idea

is used in TVs, where the LCD has red, green and blue color dots next to each other

making up each pixel.

If we set the brightness of all three LEDs to be the same, then the overall color of

the light will be white. If we turn off the blue LED, so that just the red and green

LEDs are the same brightness, then the light will appear yellow.

We can control the brightness of each of the red, green and blue parts of the LED

separately, making it possible to mix any color we like.

Black is not so much a color as an absence of light. Therefore, the closest we can

come to black with our LED is to turn off all three colors.

55/120

Theory (PWM)

Pulse Width Modulation (PWM) is a technique for controlling power.

We also use it here to control the brightness of each of the LEDs.

The diagram below shows the signal from one of the PWM pins on the MEGA 2560.

Roughly every 1/500 of a second, the PWM output will produce a pulse. The length

of this pulse is controlled by the 'analog Write' function. So 'analog Write(0)' will

not produce any pulse at all and 'analog Write(255)' will produce a pulse that lasts

all the way until the next pulse is due, so that the output is actually on all the time.

If we specify a value in the analog Write that is somewhere in between 0 and 255,

then we will produce a pulse. If the output pulse is only high for 5% of the time, then

whatever we are driving will only receive 5% of full power.

If, however, the output is at 5V for 90% of the time, then the load will get 90% of

the power delivered to it. We cannot see the LEDs turning on and off at that speed,

so to us, it just looks like the brightness is changing.
56/120

Connection

Schematic

57/120

Wiring diagram

58/120

59/120

Code
After wiring, please open the Sketch in folder path: Tutorial > English > code >

Lesson 4 RGB LED > RGB_LED, and click UPLOAD to upload the program.

See Lesson 2 for details about program uploading if there are any errors.

The sketch starts by specifying which pins are going to be used for each of the colors:

// Define Pins

#define BLUE 3

#define GREEN 5

#define RED 6

The next step is to write the 'setup' function. As we have learnt in earlier lessons,

the setup function runs just once after the Arduino has reset. In this case, all it has

to do is define the three pins we are using as being outputs.

void setup()

{

pinMode(RED, OUTPUT);

pinMode(GREEN, OUTPUT);

pinMode(BLUE, OUTPUT);

digitalWrite(RED, HIGH);

digitalWrite(GREEN, LOW);

digitalWrite(BLUE, LOW);

}

58 / 223

Example picture

60/120

This function takes three arguments, one for the brightness of the red, green

and blue LEDs. In each case the number will be in the range 0 to 255, where 0

means off and 255 means maximum brightness. The function then calls

'analogWrite' to set the brightness of each LED.

Try adding a few colors of your own to the sketch and watch the effect on your LED.

Before we take a look at the 'loop' function, let’s look at the last function in the

sketch.

The define variables

redValue = 255; // choose a value between 1 and 255 to change the color.

greenValue = 0;

blueValue = 0;

Lesson 5 Digital Inputs

Overview
In this lesson, you will learn to use push buttons with digital inputs to turn an LED

on and off.

Pressing the button will turn the LED on; pressing the other button will turn the LED

off.

Component Required:
(1) x Elegoo Mega 2560 R3

(1) x 830 Tie-points Breadboard

(1) x 5mm red LED

(1) x 220 ohm resistor

(2) x push switches

(7) x M-M wires (Male to Male jumper wires)

Component Introduction
PUSH SWITCHES:

Switches are really simple components. When you press a button or flip a lever, they

connect two contacts together so that electricity can flow through them.

The little tactile switches that are used in this lesson have four connections, which

can be a little confusing.

Actually, there are only really two electrical connections. Inside the switch package,

pins B and C are connected together, as are A and D.

61/120

Connection
Schematic

62 / 120

63/120

Wiring diagram

Although the bodies of the switches are square, the pins protrude from opposite

sides of the switch. This means that the pins will only be far enough apart when they

are placed correctly on the breadboard.

Remember that the LED has to have the shorter negative lead to the left.

Code
After wiring please open program in the code folder- Lesson 5 Digital Inputs, and

press UPLOAD to upload the program. If errors are prompted, see Lesson 2 for

details about the tutorial on program upload.

Load the sketch onto your MEGA2560 board. Pressing the left button will turn the

LED on while pressing the right button will turn it off.

The first part of the sketch defines three variables for the three pins that are to be

used. The 'ledPin' is the output pin and 'buttonApin' will refer to the switch nearer

the top of the breadboard and 'buttonBpin' to the other switch.

The 'setup' function defines the ledPin as being an OUTPUT as normal, but now we

have the two inputs to deal with. In this case, we use the set the pinMode to be

'INPUT_PULLUP' like this:

pinMode(buttonApin, INPUT_PULLUP);

pinMode(buttonBpin, INPUT_PULLUP);

The pin mode of INPUT_PULLUP means that the pin is to be used as an input, but

that if nothing else is connected to the input, it should be 'pulled up' to HIGH. In

other words, the default value for the input is HIGH, unless it is pulled LOW by the

action of pressing the button.

This is why the switches are connected to GND. When a switch is pressed, it

connects the input pin to GND, so that it is no longer HIGH.

Since the input is normally HIGH and only goes LOW when the button is pressed, the

logic is a little upside down. We will handle this in the 'loop' function.

void loop()

{

if (digitalRead(buttonApin) == LOW)

{

digitalWrite(ledPin, HIGH);

}

if (digitalRead(buttonBpin) == LOW)

64/ 120

65 / 120

{

digitalWrite(ledPin, LOW);

}

}

In the 'loop' function there are two 'if' statements. One for each button. Each does

an 'digitalRead' on the appropriate input.

Remember that if the button is pressed, the corresponding input will be LOW, if

button A is low, then a 'digitalWrite' on the ledPin turns it on.

Similarly, if button B is pressed, a LOW is written to the ledPin.

Example picture

Lesson 6 Active buzzer

Overview
In this lesson, you will learn how to generate a sound with an active buzzer.

Component Required:
(1) x Elegoo Mega 2560 R3

(1) x Active buzzer

(2) x F-M wires (Female to Male DuPont wires)

Component Introduction
BUZZER:

Electronic buzzers are DC-powered and equipped with an integrated circuit. They

are widely used in computers, printers, photocopiers, alarms, electronic toys,

automotive electronic devices, telephones, timers and other electronic products for

voice devices. Buzzers can be categorized as active and passive ones. Turn the pins

of two buzzers face up. The one with a green circuit board is a passive buzzer, while

the other enclosed with a black tape is an active one.

The difference between the two is that an active buzzer has a built-in oscillating
source, so it will generate a sound when electrified. A passive buzzer does not have

such a source so it will not tweet if DC signals are used; instead, you need to use

square waves whose frequency is between 2K and 5K to drive it. The active buzzer

is often more expensive than the passive one because of multiple built-in oscillating

circuits.

66 / 120

67 /120

Connection
Schematic

Wiring diagram

68 / 120

69 / 120

Code
After wiring, please open the program in the code folder- Lesson 6 Making Sounds

and click UPLOAD to upload the program. See Lesson 2 for details about program

uploading if there are any errors.

Example picture

Lesson 7 Passive Buzzer

Overview
In this lesson, you will learn how to use a passive buzzer.

The purpose of the experiment is to generate eight different sounds, each sound

lasting 0.5 seconds: from Alto Do (523Hz), Re (587Hz), Mi (659Hz), Fa (698Hz), So

(784Hz), La (880Hz), Si (988Hz) to Treble Do (1047Hz).

Component Required:
(1) x Elegoo Mega2560 R3

(1) x Passive buzzer

(2) x F-M wires (Female to Male DuPont wires)

Component Introduction
Passive Buzzer:

The working principle of passive buzzer is using PWM generating audio to make the

air to vibrate. Appropriately changed as long as the vibration frequency, it can

generate different sounds. For example, sending a pulse of 523Hz, it can generate

Alto Do, pulse of 587Hz, it can generate midrange Re, pulse of 659Hz, it can produce

midrange Mi. By the buzzer, you can play a song.
We should be careful not to use the MEGA 2560 R3 board analog Write ()

function to generate a pulse to the buzzer, because the pulse output of analog

Write () is

70 / 120

71/ 120

Connection
Schematic

Wiring diagram

72/120

73 / 120

Wiring the buzzer connected to the MEGA 2560 R3 board, the red (positive) to the

pin8, black wire (negative) to the GND.

Code
After wiring, please open the program in the code folder- Lesson 7 Passive Buzzer and

click UPLOAD to upload the program. See Lesson 2 for details about program

uploading if there are any errors.

Before you can run this, make sure that you have installed the <pitches> library or

re-install it, if necessary. Otherwise, your code won't work.

For details about loading the library file, see Lesson 1.

Example picture

Lesson 8 Tilt Ball Switch

Overview
In this lesson, you will learn how to use a tilt ball switch in order to detect small

angle of inclination.

Component Required:
(1) x Elegoo Mega 2560 R3

(1) x Tilt Ball switch

(2) x F-M wires (Female to Male DuPont wires)

Component Introduction
Tilt sensor:

Tilt sensors (tilt ball switch) allow you to detect orientation or inclination. They are

small, inexpensive, low-power and easy-to-use. If used properly, they will not wear

out. Their simplicity makes them popular for toys, gadgets and appliances.

Sometimes, they are referred to as "mercury switches", "tilt switches" or "rolling

ball sensors" for obvious reasons.

They are usually made up of a cavity of some sort (cylindrical is popular, although

not always) with a conductive free mass inside, such as a blob of mercury or rolling

ball. One end of the cavity has two conductive elements (poles). When the sensor is

oriented so that that end is downwards, the mass rolls onto the poles and shorts

them, acting as a switch throw.

While not as precise or flexible as a full accelerometer, tilt switches can detect

motion or orientation. Another benefit is that the big ones can switch power on

their own. Accelerometers, on the other hand, output digital or analog voltage that

must then be analyzed using extra circuitry.

74/120

73 / 223

Connection
Schematic

75/120

Wiring diagram

76/120

Code
After wiring, please open the program in the code folder- Lesson 8 Ball Switch and

click UPLOAD to upload the program. See Lesson 2 for details about program

uploading if there are any errors.

Example picture

77/120

Lesson 9 LCD Display

Overview
In this lesson, you will learn how to wire up and use an alphanumeric LCD display.

The display has an LED backlight and can display two rows with up to 16 characters

on each row. You can see the rectangles for each character on the display and the

pixels that make up each character. The display is just white on blue and is intended

for showing text.

In this lesson, we will run the Arduino example program for the LCD library, but in

the next lesson, we will get our display to show the temperature, using sensors.

Component Required:
(1) x Elegoo Mega 2560 R3

(1) x LCD1602 module

(1) x Potentiometer (10k)

(1) x 830 tie-points Breadboard

(16) x M-M wires (Male to Male jumper wires)

Component Introduction
LCD1602

Introduction to the pins of LCD1602:

VSS: A pin that connects toground

VDD: A pin that connects to a +5V power supply

VO: A pin that adjust the contrast of LCD1602

RS: A register select pin that controls where in the LCD’s memory you are writing data

to. You can select either the data register, which holds what goes on the screen, or an

instruction register, which is where the LCD’s controller looks for instructions on what

to do next.

R/W: A Read/Write pin that selects reading mode or writing mode

E: An enabling pin that, when supplied with low-level energy, causes the LDC module

to execute relevant instructions.

D0-D7：Pins that read and writedata

A and K: Pins that control the LEDbacklight

78/120

Connection
Schematic

79/120

Wiring diagram

80/120

The LCD display needs six Arduino pins, all set to be digital outputs. It also needs 5V

and GND connections.

There are a number of connections to be made. Lining up the display with the top

of the breadboard helps to identify its pins without too much counting, especially if

the breadboard has its rows numbered with row 1 as the top row of the board. Do

not forget, the long yellow lead that links the slider of the pot to pin 3 of the display.

The 'pot' is used to control the contrast of the display.

You may find that your display is supplied without header pins attached to it. If so,

follow the instructions in the next section.

Code
After wiring, please open the program in the code folder- Lesson 9 LCD Display and

click UPLOAD to upload the program. See Lesson 2 for details about program

uploading if there are any errors.

Before you can run this, make sure that you have installed the < Liquid Crystal >

library or re-install it, if necessary. Otherwise, your code won't work.

For details about loading the library file, see Lesson 1.

Upload the code to your Arduino board and you should see the message 'hello,

world' displayed, followed by a number that counts up from zero.

The first thing of note in the sketch is the line:

#include <LiquidCrystal.h>

This tells Arduino that we wish to use the Liquid Crystal library.

Next we have the line that we had to modify. This defines which pins of the Arduino

are to be connected to which pins of the display.

LiquidCrystal lcd(7, 8, 9, 10, 11, 12);

After uploading this code, make sure the backlight is lit up, and adjust the

potentiometer all the way around until you see the text message

In the 'setup' function, we have two commands:

lcd.begin(16, 2);

lcd.print("Hello, World!");

The first tells the Liquid Crystal library how many columns and rows the display has.

The second line displays the message that we see on the first line of the screen.

In the 'loop' function, we aso have two commands:

lcd.setCursor(0, 1);

lcd.print(millis()/1000);
81/120

1

The first sets the cursor position (where the next text will appear) to column 0 &

row 1. Both column and row numbers start at 0 rather than 1.

The second line displays the number of milliseconds since the Arduino was reset.

Example picture

82/120

Lesson 10 Thermometer

Overview
In this lesson, you will use an LCD display to show the temperature.

Component Required:
(1) x Elegoo Mega 2560 R3

(1) x LCD1602 Module

(1) x 10k ohm resistor

(1) x Thermistor

(1) x Potentiometer

(1) x 830 tie-points Breadboard

(18) x M-M wires (Male to Male jumper wires)

Component Introduction

Thermistor
A thermistor is a thermal resistor - a resistor that changes its resistance with

temperature. Technically, all resistors are thermistors - their resistance changes

slightly with temperature - but the change is usually very small and difficult to

measure. Thermistors are made so that the resistance changes drastically with

temperature so that it can be 100 ohms or more of change per degree!

There are two kinds of thermistors, NTC (negative temperature coefficient) and PTC

(positive temperature coefficient). In general, you will see NTC sensors used for

temperature measurement. PTC's are often used as resettable fuses - an increase in

temperature increases the resistance which means that as more current passes thru

them, they heat up and 'choke back' the current, quite handy for protectingcircuits

83/120

158 / 223

Connection
Schematic

84/120

Wiring diagram

85/120

The breadboard layout is based on the layout from Lesson 22, so it will simplify

things if you still have this on the breadboard.

There are a few jumper wires near the pot that have been moved slightly on this

layout.

The 10 kΩ resistor and thermistor are all new additions to the board.

Code
After wiring, please open the program in the code folder- Lesson 10 Thermometer

and click UPLOAD to upload the program. See Lesson 2 for details about program

uploading if there are any errors.

Before you can run this, make sure that you have installed the < LiquidCrystal >

library or re-install it, if necessary. Otherwise, your code won't work.

For details about loading the library file, see Lesson 1.

The sketch for this is based on that of lesson 22. Load it up onto your Arduino and

you should find that warming the temperature sensor by putting your finger on it

will increase the temperature reading.

I find it useful to put a comment line above the 'lcd'command.

// BS E D4 D5 D6 D7

LiquidCrystal lcd(7, 8, 9, 10, 11, 12);

This makes things easier if you decide to change which pins you use.

In the 'loop' function there are now two interesting things going on. Firstly we have

to convert the analog from the temperature sensor into an actual temperature, and

secondly we have to work out how to displaythem.

First of all, let's look at calculating thetemperature.

int tempReading = analogRead(tempPin);

double tempK = log(10000.0 * ((1024.0 / tempReading -1)));

tempK = 1 / (0.001129148 + (0.000234125 + (0.0000000876741 * tempK * tempK))

* tempK);

float tempC = tempK - 273.15;

float tempF = (tempC * 9.0)/ 5.0 + 32.0;

Displaying changing readings on an LCD display can be tricky. The main problem is

that the reading may not always be the same number of digits. So, if the

temperature changed from 101.50 to 99.00 then the extra digit from the old reading

is in danger of being left on the display.

To avoid this, write the whole line of the LCD each time around the loop.

86/120

161

lcd.setCursor(0, 0);

lcd.print("Temp C ");

lcd.setCursor(6, 0);

lcd.print(tempF);

The rather strange comment serves to remind you of the 16 columns of the display.

You can then print a string of that length with spaces where the actual reading will

go.

To fill in the blanks, set the cursor position for where the reading should appear and

then print it.

Example picture

87/120

Lesson 11 Eight LED with 74HC595

Overview
In this lesson, you will learn how to use eight large red LEDs with an MEGA2560

without needing to give up 8 output pins!

Although you could wire up eight LEDs each with a resistor to an MEGA2560 pin you

would rapidly start to run out of pins on your MEGA2560. If you don't have a lot of

stuff connected to your MEGA2560. It's OK to do so - but often times we want

buttons, sensors, servos, etc. and before you know it you've got no pins left. So,

instead of doing that, you are going to use a chip called the 74HC595 Serial to

Parallel Converter. This chip has eight outputs (perfect) and three inputs that you

use to feed data into it a bit at a time.

This chip makes it a little slower to drive the LEDs (you can only change the LEDs

about 500,000 times a second instead of 8,000,000 a second) but it's still really fast,

way faster than humans can detect, so it's worth it!

Component Required:
(1) x Elegoo Mega 2560 R3

(1) x 830 tie-points breadboard

(8) x leds

(8) x 220 ohm resistors

(1) x 74hc595 IC

(14) x M-M wires (Male to Male jumper wires)

Component Introduction
74HC595 Shift Register:

The shift register is a type of chip that holds what can be thought of as eight memory

locations, each of which can either be a 1 or a 0. To set each of these values on or

off, we feed in the data using the 'Data' and 'Clock' pins of the chip.

88/120

89/120

The clock pin needs to receive eight pulses. At each pulse, if the data pin is high,

then a 1 gets pushed into the shift register; otherwise, a 0. When all eight pulses

have been received, enabling the 'Latch' pin copies those eight values to the latch

register. This is necessary; otherwise, the wrong LEDs would flicker as the data is

being loaded into the shift register.

The chip also has an output enable (OE) pin, which is used to enable or disable the

outputs all at once. You could attach this to a PWM-capable MEGA 2560 pin and

use 'analog Write' to control the brightness of the LEDs. This pin is active low, so

we tie it to GND.

Connection
Schematic

90/120

Wiring diagram

91/120

As we have eight LEDs and eight resistors to connect, there are actually quite a few

connections to be made.

It is probably easiest to put the 74HC595 chip in first, as pretty much everything else

connects to it. Put it so that the little U-shaped notch is towards the top of the

breadboard. Pin 1 of the chip is to the left of this notch.

Digital 12 from the MEGA2560 goes to pin #14 of the shift register

Digital 11 from the MEGA2560 goes to pin #12 of the shift register

Digital 9 from the MEGA2560 goes to pin #11 of the shift register

All but one of the outputs from the IC is on the left side of the chip. Hence, for ease

of connection, that is where the LEDs are, too.

After the chip, put the resistors in place. You need to be careful that none of the

leads of the resistors are touching each other. You should check this again before

you connect the power to your MEGA2560. If you find it difficult to arrange the

resistors without their leads touching, then it helps to shorten the leads so that they

are lying closer to the surface of thebreadboard.

Next, place the LEDs on the breadboard. The longer positive LED leads must all be

towards the chip, whichever side of the breadboard they are on.

Attach the jumper leads as shown above. Do not forget the one that goes from pin

8 of the IC to the GND column of the breadboard.

Load up the sketch listed a bit later and try it out. Each LED should light in turn until

all the LEDs are on, and then they all go off and the cycle repeats.

Code
After wiring, please open the program in the code folder- Lesson 11 Eight LED with

74HC595 and click UPLOAD to upload the program. See Lesson 2 for details about

program uploading if there are any errors.

The first thing we do is define the three pins we are going to use. These are the

MEGA2560 digital outputs that will be connected to the latch, clock and data pins
of the 74HC595.

int latchPin = 11;

int clockPin = 9;

int dataPin = 12;

Next, a variable called 'leds' is defined. This will be used to hold the pattern of which

LEDs are currently turned on or off. Data of type 'byte' represents numbers using

eight bits. Each bit can be either on or off, so this is perfect for keeping track of

92/ 120

which of our eight LEDs are on or off.

byte leds = 0;

The 'setup' function just sets the three pins we are using to be digital outputs.

void setup()

{

pinMode(latchPin, OUTPUT);

pinMode(dataPin, OUTPUT);

pinMode(clockPin, OUTPUT);

}

The 'loop' function initially turns all the LEDs off, by giving the variable 'leds' the

value 0. It then calls 'updateShiftRegister' that will send the 'leds' pattern to the shift

register so that all the LEDs turn off. We will deal with how 'updateShiftRegister'

works later.

The loop function pauses for half a second and then begins to count from 0 to 7

using the 'for' loop and the variable 'i'. Each time, it uses the Arduino function

'bitSet' to set the bit that controls that LED in the variable 'leds'. It then also calls

'updateShiftRegister' so that the leds update to reflect what is in the variable'leds'.

There is then a half second delay before 'i' is incremented and the next LED is lit.

void loop()

{

leds = 0;

updateShiftRegister();

delay(500);

for (int i = 0; i < 8; i++)

{

bitSet(leds, i);

updateShiftRegister();

delay(500);

}

}

The function 'updateShiftRegister', first of all sets the latchPin to low, then calls the

MEGA2560 function 'shiftOut' before putting the 'latchPin' high again. This takes

four parameters, the first two are the pins to use for Data and Clock respectively.

The third parameter specifies which end of the data you want to start at. We are

going to start with the right most bit, which is referred to as the 'Least Significant

93 / 120

168 / 223

Bit' (LSB).

The last parameter is the actual data to be shifted into the shift register, which in

this case is 'leds'.

void updateShiftRegister()

{

digitalWrite(latchPin, LOW);

shiftOut(dataPin, clockPin, LSBFIRST, leds);

digitalWrite(latchPin, HIGH);

}

If you wanted to turn one of the LEDs off rather than on, you would call a similar

Arduino function (bitClear) with the 'leds' variable. This will set that bit of 'leds' to

be 0 and you would then just need to follow it with a call to 'updateShiftRegister' to

update the actual LEDs.

Example picture

94/120

Lesson 12 The Serial Monitor

Overview
In this lesson, you will build on Lesson 11, adding the facility to control the LEDs

from your computer using the Arduino Serial Monitor. The serial monitor is the

'tether' between the computer and your MEGA2560. It lets you send and receive

text messages, handy for debugging and also controlling the MEGA2560 from a

keyboard! For example, you will be able to send commands from your computer to

turn on LEDs.

In this lesson, you will use exactly the same parts and a similar breadboard layout

as Lesson 11. So, if you have not already done so, follow Lesson 11 now.

Steps taken

95/120

After you have uploaded this sketch onto your MEGA2560, click on the right-most

button on the toolbar in the Arduino IDE. The button is circled below.

The following window will open.

Click the Serial Monitor button to turn on the serial monitor. The basics about the

serial monitor are introduced in details in Lesson 1.

96/120

This window is called the Serial Monitor and it is part of the Arduino IDE software.

Its job is to allow you to both send messages from your computer to an MEGA2560

board (over USB) and also to receive messages from the MEGA2560.

The message “Enter LED Number 0 to 7 or 'x' to clear” has been sent by the Arduino.

It is telling us what commands we can send to the Arduino: either send the 'x' (to

turn all the LEDs off) or the number of the LED you want to turn on (where 0 is the

bottom LED, 1 is the next one up, all the way to 7 for the top LED).

Try typing the following commands into the top area of the Serial Monitor that is

level with the 'Send' button. Press 'Send', after typing each of these characters: x 0

3 5

Typing x will have no effect if the LEDs are already all off, but as you enter each

number, the corresponding LED should light and you will get a confirmation

message from the MEGA2560 board. The Serial Monitor will appear as shown below.

97/120

Type x again and press ‘Send’ to turn off all LEDs.

Code
After wiring, please open program in the code folder- Lesson 12 The Serial Monitor

and click UPLOAD to upload the program. See Lesson 2 for details about program

uploading if there are any errors.

As you might expect, the sketch is based on the sketch used in Lesson 24. So, we will

just cover the new bits here. You will find it useful to refer to the full sketch in your

Arduino IDE.

In the 'setup' function, there are three new lines at the end:

void setup()

{

pinMode(latchPin, OUTPUT);

pinMode(dataPin, OUTPUT);

pinMode(clockPin, OUTPUT);

updateShiftRegister();

Serial.begin(9600);

while (! Serial); // Wait until Serial is ready - Leonardo

Serial.println("Enter LED Number 0 to 7 or 'x' toclear");

}

Firstly, we have the command 'Serial.begin(9600)'. This starts serial communication,

so that the MEGA2560 can send out commands through the USB connection. The

value 9600 is called the 'baud rate' of the connection. This is how fast the data is to

be sent. You can change this to a higher value, but you will also have to change the

Arduino Serial monitor to the same value. We will discuss this later; for now, leave

it at 9600.

The line beginning with 'while' ensures that there is something at the other end of

the USB connection for the Arduino to talk to before it starts sending messages.

Otherwise, the message might be sent, but not displayed. This line is actually only

necessary if you are using an Arduino Leonardo because the Arduino MEGA2560

automatically resets the Arduino board when you open the Serial Monitor, whereas

this does not happen with the Leonardo.

The last of the new lines in 'setup' sends out the message that we see at the top of

the Serial Monitor. 98/120

The 'loop' function is where all the action happens:

void loop()

{

if (Serial.available())

{

char ch = Serial.read();

if (ch >= '0' && ch <= '7')

{

int led = ch - '0';

bitSet(leds, led);

updateShiftRegister();

Serial.print("Turned on LED ");

Serial.println(led);

}

if (ch == 'x')

{

leds = 0; updateShiftRegister();

Serial.println("Cleared");

}

}

}

99/120

Everything that happens inside the loop is contained within an 'if' statement. So

unless the call to the built-in Arduino function 'Serial.available()' is 'true' then

nothing else will happen.

Serial.available() will return 'true' if data has been send to the MEGA2560 and is

there ready to be processed. Incoming messages are held in what is called a buffer

and Serial.available() returns true if that buffer is Not empty.

If a message has been received, then its on to the next line ofcode:

char ch = Serial.read();

This reads the next character from the buffer, and removes it from the buffer. It also

assigns it to the variable 'ch'. The variable 'ch' is of type 'char' which stands for

'character' and as the name suggests, holds a single character.

If you have followed the instructions in the prompt at the top of the Serial Monitor,

then this character will either be a single digit number between 0 and 7 or the letter

'x'.

The 'if' statement on the next line checks to see if it is a single digit by seeing if 'ch'

is greater than or equal to the character '0' and less than or equal to the character

'7'. It looks a little strange comparing characters in this way, but is perfectly

acceptable.

Each character is represented by a unique number, called its ASCII value. This means

that when we compare characters using <= and >= it is actually the ASCII values that

were being compared.

If the test passes, then we come to the next line:

int led = ch – '0';

Now we are performing arithmetic on characters! We are subtracting the digit '0'

from whatever digit was entered. So, if you typed '0' then '0' – '0' will equal 0. If you

typed '7' then '7' – '0' will equal the number 7 because it is actually the ASCII values

that are being used in the subtraction.

Since that we know the number of the LED that we want to turn on, we just need to

set that bit in the variable 'leds' and update the shift register.

bitSet(leds, led);

updateShiftRegister();

100/120

The next two lines write back a confirmation message to the Serial Monitor.

Serial.print("Turned on LED ");

Serial.println(led);

The first line uses Serial.print rather than Serial.println. The different between the

two is that Serial.print does not start a new line after printing whatever is in its

parameter. We use this in the first line, because we are printing the message in two

parts. Firstly the general bit: 'Turned on LED ' and then the number of the LED.

The number of the LED is held in an 'int' variable rather than being a text string.

Serial.print can take either a text string enclosed in double-quotes, or an 'int' or for

that matter pretty much any type of variable.

After the 'if' statement that handles the case, when a single digit has been handled,

there is a second 'if' statement that checks to see if 'ch' is the letter 'x'.

if (ch == 'x')
{

leds = 0; updateShiftRegister();

Serial.println("Cleared");

}

If it is, then it clears all the LEDs and sends a confirmation message

101/120

Lesson 13 Photocell

Overview
In this lesson, you will learn how to measure light intensity using an Analog Input.

You will build on lesson 12 and use the level of light to control the number of LEDs

to be lit.

The photocell is at the bottom of the breadboard, where the pot was above.

Component Required:
(1) x Elegoo Mega 2560 R3

(1) x 830 tie-points breadboard

(8) x leds

(8) x 220 ohm resistors

(1) x 1k ohm resistor

(1) x 74hc595 IC

(1) x Photoresistor (Photocell)

(16) x M-M wires (Male to Male jumper wires)

Component Introduction
PHOTOCELL:

The photocell used is of a type called a light dependent resistor, sometimes called

an LDR. As the name suggests, these components act just like a resistor, except that

the resistance changes in response to how much light is falling on them.

This one has a resistance of about 50 kΩ in near darkness and 500 Ω in bright light.

To convert this varying value of resistance into something we can measure on an

MEGA 2560 R3 board's analog input, it needs to be converted into a voltage.

The simplest way to do that is to combine it with a fixed resistor.

102/120

The resistor and photocell together behave like a pot. When the light is very bright,

then the resistance of the photocell is very low compared with the fixed value

resistor, and so it is as if the pot were turned to maximum.

When the photocell is in dull light, the resistance becomes greater than the fixed 1

kΩ resistor and it is as if the pot were being turned towards GND.

Load up the sketch given in the next section and try covering the photocell with your

finger, and then holding it near a light source.

103/120

Connection
Schematic

104/120

Wiring diagram

105/120

2

179 2/ 223

Code
After wiring, please open the program in the code folder- Lesson 13 Photocell and

click UPLOAD to upload the program. See Lesson 2 for details about program

uploading if there are any errors.

The first thing to note is that we have changed the name of the analog pin to be

'lightPin' rather than 'potPin' since we no longer have a pot connected.

The only other substantial change to the sketch is the line that calculates how many

of the LEDs to light:

int numLEDSLit = reading / 57; // all LEDs lit at 1k

This time, we divide the raw reading by 57 rather than 114. In other words, we divide

it by half as much as we did with the pot to split it into nine zones, from no LEDs lit

to all eight lit. This extra factor is to account for the fixed 1 kΩ resistor. This means

that when the photocell has a resistance of 1 kΩ (the same as the fixed resistor), the

raw reading will be 1023 / 2 = 511. This will equate to all the LEDs being lit and then

a bit (numLEDSLit) will be 8.

Example picture

106/120

Lesson 14 Four Digital Seven Segment Display

Overview
In this lesson, you will learn how to use a 4-digit 7-segment display.

When using 1-digit 7-segment display please notice that if it is common anode, the

common anode pin connects to the power source; if it is common cathode, the

common cathode pin connects to the GND.

When using 4-digit 7-segment display, the common anode or common cathode pin

is used to control which digit is displayed. Even though there is only one digit

working, the principle of Persistence of Vision enables you to see all numbers

displayed because each the scanning speed is so fast that you hardly notice the

intervals.

Component Required:
(1) x Elegoo Mega 2560 R3

(1) x 830 tie-points breadboard

(1) x 74HC595 IC

(1) x 4 Digit 7-Segment Display
(4) x 220 ohm resistors

(23) x M-M wires (Male to Male jumper wires)

107 /120

108/ 120

Component Introduction
Four Digital Seven segment display

109/120

Connection
Schematic

Wiring diagram

110/120

Code
After wiring, please open the program in the code folder- Lesson 14 Four Digital Seven Segment

Display and click UPLOAD to upload the program. See Lesson 2 for details about program uploading

if there are any errors.

Example picture

112/120

Lesson 15 DC Motors

Overview

In this lesson, you will learn how to control a small DC motor using an MEGA 2560 and a transistor.

Component Required:

(1) x Elegoo MEGA 2560

(1) x Breadboard

(1) x 6v dc motor

(1) x PN2222

(1) x 1N4007

(1) x 220 ohm resistor

(3) x M-M wires

Component Introduction

TRANSISTORS

The small DC motor is likely to use more power than an MEGA 2560 board digital output can handle

directly. If we tried to connect the motor straight to an MEGA 2560 board pin, there is a good chance

that it could damage the MEGA 2560 board.

A small transistor like the PN2222 can be used as a switch that uses just a little current from the

MEGA 2560 board digital output to control the much bigger current of the motor.

113/120

The transistor has three leads. Most of the electricity flows from the Collector to the Emitter, but this

will only happen if a small amount is flowing into the Base connection. This small current is supplied by

the MEGA 2560 board digital output.

Below is called a schematic diagram of the. Like a breadboard layout, it is a way of showing how the

parts of an electronic project are connected together.

114/120

The pin D3 of the MEGA2560 board is connected to the resistor. Just like when using an LED, this

limits the current flowing into the transistor through the base.

There is a diode connected across the connections of the motor. Diodes only allow electricity to

flow in one direction (the direction of their arrow).

When you turn the power off to a motor, you get a negative spike of voltage, that can damage your

MEGA2560 board or the transistor. The diode protects against this, by shorting out any such reverse

current from the motor.

Through this experiment, you've learned how to drive LCD1602. Now you can create your own

messages to display! You can also try letting your LCD1602 display numbers.

Connection
wiring diagram

You will use an MEGA2560 board analog output (PWM) to control the speed of the motor by sending

a number between 0 and 255 from the Serial Monitor.

When you put together the breadboard, there are two things to look outfor.

First, make sure that the flat side of the transistor is on the right-hand side of the breadboard.

115/120

Second, the striped end of the diode should be towards the +5V power line - see the image below!

The motor that comes with the kits does not draw more than 250mA but if you have a different

motor, it could easily draw 1000mA, more than a USB port can handle! If you aren't sure of a motor's

current draw, power the MEGA 2560 board from a wall adapter, not just USB. The transistor acts like

a switch, controlling the power to the motor, MEGA 2560 board pin 3 is used to turn the transistor

on and off and is given the name 'motor Pin' in the sketch.

When the sketch starts, it prompts to remind you that to control the speed of the motor, you need to

enter a value between 0 and 255 in the Serial Monitor.

In the 'loop' function, the command 'Serial.parseInt' is used to read the number entered as text in the

Serial Monitor and convert it into an 'int'.

You could type any number here, so the 'if' statement on the next line only does an analog write with

this number if the number is between 0 and 255.

116/120

Example picture

117/120

Lesson 16 Relay
Overview

In this lesson, you will learn how to use a relay.

Component Required:

(1) x Elegoo MEGA 2560

(1) x Breadboard

(1) x PN2222

(1) x 1N4007

(1) x 220 ohm resistor

(1) x 6v dc motor

(1) x Relay

(1) x Breadboard power supply module

(1) x 9v power supply adapter

(8) x M-M wires

Component Introduction

Relay:

A relay is an electrically operated switch. Many relays use an electromagnet to m e c h a n i c a l l y

operate a switch, but other operating principles are also used as in solid-state relays. Relays a r e

used where it is necessary to control a circuit by a low-power signal (with complete electrical

isolation between control and controlled circuits), or where several circuits must be controlled by

one signal. The first relays were used in long-distance telegraph circuits as amplifiers. They repeated

the signal coming in from one circuit and re-transmitted it on another circuit. Relays were used

extensively in telephone exchanges and early computers to perform logical operations.

A type of relay that can handle the high power required to directly control an electric motor or other

loads is called a contactor. Solid-state relays control power circuits with no moving

118/120

parts, instead using a semiconductor device to perform the switching. Relays with calibrated

operating characteristics and sometimes multiple operating coils are used to protect electrical circuits

from overload or faults. In modern electric power systems, these functions are performed by digital

instruments called "protectiverelays".

Below is the schematic of how to drive relay with Arduino (download from the arduino.cc)

Connection

wiring diagram

 119/120

Code

See the code file.

120/120

	V1.0.18.8.21
	Our Company
	Our Tutorial
	Customer Service
	Packing List
	Content
	Lesson 0 Installing IDE
	Introduction
	STEP 1: Go to https://www.arduino.cc/en/Main/Software and find below page.

	Installing Arduino (Windows)
	Install Arduino with the exe. Installation package.
	You can press Browse… to choose an installation path or directly type in the directory you want.
	However, this installation method needs separate installation of driver.
	Windows users may skip the installation directions for Mac and Linux systems and jump to Lesson 1. Mac and Linux users may continue to read this section.

	Step One: Download Arduino Software (IDE)
	Download and Unzip the zip file, double click the Arduino. app to enter Arduino IDE; the system will ask you to install Java runtime library if you don’t have it in your computer. Once the installation is complete you can run the Arduino IDE.
	Lesson 1 Add Libraries and Open Serial Monitor
	What are Libraries?
	How to Install a Library
	Importing a .zip Library
	Manual installation
	Arduino Serial Monitor (Windows, Mac, Linux)
	Making a Connection
	Settings
	Pros
	Cons

	Lesson 2 Blink
	Overview
	Component Required:
	Note: The Board Type and Serial Port here are not necessarily the same as shown in picture. If you are using 2560, then you will have to choose Mega 2560 as the Board Type, other choices can be made in the same manner. And the Serial Port displayed fo...

	Lesson 3 LED
	Overview
	Component Required:
	Component Introduction
	BREADBOARD MB-102：
	LED:
	RESISTORS:

	Connection
	Schematic
	Wiring diagram

	Examplepicture

	Lesson 4 RGB LED
	Overview
	Component Required:
	Component Introduction
	RGB:
	COLOR:

	Theory (PWM)
	Connection
	Schematic
	Wiring diagram

	Code
	Example picture

	Lesson 5 Digital Inputs
	Overview
	Component Required:
	Component Introduction
	PUSH SWITCHES:

	Connection
	Schematic
	Wiring diagram

	Code
	Example picture

	Lesson 6 Active buzzer
	Component Required:
	Component Introduction
	BUZZER:

	Connection
	Schematic

	Code
	Example picture

	Lesson 7 Passive Buzzer
	Component Required:
	Component Introduction
	Passive Buzzer:

	Connection
	Schematic
	Wiring diagram

	Code
	Example picture

	Lesson 8 Tilt Ball Switch
	Overview
	Component Required:
	Component Introduction
	Tilt sensor:

	Connection
	Schematic
	Wiring diagram

	Example picture

	Lesson 9 LCD Display
	Component Required:
	Component Introduction
	LCD1602

	Connection
	Schematic

	Code
	Example picture

	Lesson 10 Thermometer
	Overview
	Component Required:
	Component Introduction Thermistor
	Connection
	Schematic
	Wiring diagram

	Code
	Example picture

	Lesson 11 Eight LED with 74HC595
	Overview
	Component Required:
	Component Introduction
	74HC595 Shift Register:

	Connection
	Schematic

	Code
	Example picture

	Lesson 12 The Serial Monitor
	Overview
	Steps taken
	Code

	Lesson 13 Photocell
	Overview
	Component Required:
	Component Introduction
	PHOTOCELL:

	Connection
	Schematic

	Example picture
	Component Required:
	Component Introduction
	Four Digital Seven segment display

	Connection
	Schematic
	Wiring diagram

	Example picture
	Component Introduction
	Connection
	wiring diagram

	Lesson 16 Relay
	Overview
	Component Required:
	Component Introduction
	Relay:

	Connection
	wiring diagram

