Willkommen!

Vielen Dank, dass sie sich für unser *GY-61 Beschleunigungssensor-Modul* von *AZ-Delivery* entschieden haben. In den nachfolgenden Seiten werden wir Ihnen erklären wie Sie das Gerät einrichten und nutzen können.

Viel Spaß!

Inhaltsverzeichnis

Einführung	3
Technische Daten	4
Pinbelegung	5
Wie man die Arduino IDE einrichtet	6
Wie man den Raspberry Pi und Python einrichtet	10
Verbindung des Moduls mit dem Uno	11
Sketch-Beispiel	12
Externer Analog-Digital-Wandler	14
Verbindung des ADS1115 Moduls mit dem Raspberry Pi	16
Libraries und Tools für Python	18
Aktivieren der I2C-Schnittstelle	19
Test-Skript für das ADS1115 Modul	21
Verbindung des Moduls mit dem Raspberry Pi	24
Python-Skript	26

Einführung

Das Beschleunigungsmessermodul GY-61 ist ein dreiachsiges Beschleunigungssensormodul, das auf dem integrierten Schaltkreis ADXL335 basiert, der die Beschleunigung der X-, Y- und Z-Achse liest und in analoge Spannungen umwandelt.

Durch Messung der Erdbeschleunigung kann ein Beschleunigungssensor den Winkel ermitteln, um den er im Verhältnis zur Erde geneigt ist. Durch Messen der dynamischen Beschleunigung kann der Beschleunigungssensor herausfinden, wie schnell und in welche Richtung sich das Gerät bewegt.

Der ADXL335-Chip hat nur ein geringes Rauschen und einen niedrigen Stromverbrauch. Der Sensor hat einen Messbereich von ±3g. Er kann sowohl die statische Erdbeschleunigung bei Anwendungen mit dem Neigungssensor als auch die dynamische Beschleunigung infolge von Bewegung, Schock oder Vibration messen.

Das Modul wird in vielen Anwendungen wie mobilen Geräten, Spielkonsolen, beim Schutz von Festplattenlaufwerken, Bildstabilisierung, Sport- und Gesundheitsgeräten usw. eingesetzt.

Das Modul verfügt über einen integrierten 3,3V-Spannungsregler, um den ADXL335 mit Strom zu versorgen, so dass die Versorgungsspannung zwischen +3,3V und +5V DC liegen sollte.

Technische Daten

- » Betriebsspannung:
- » Stromverbrauch:
- » Voller Messbereich:
- » Empfindlichkeit:
- » Sensor-Ausgang:
- » Spannungsausgang:
- » Dimensionen:

3V bis 5V 40µA (0,1µA Leerlauf) ±3g 300mV/g (Typ) Analog zentriert bei 1,65V 21 x 16 x 3mm [0,8 x 0,6 x 0,1in]

Pinbelegung

Das GY-61 Beschleunigungsmesser-Sensormodul hat fünf Pins. Die Pinbelegung ist wie folgt:

Hinweis: Der Raspberry Pi kann keine Analogspannung lesen, so dass ein externer Analog-Digital-Wandler verwendet werden muss.

Wie man die Arduino IDE einrichtet

Falls die Arduino-IDE nicht installiert ist, folgen Sie dem <u>link</u> und laden Sie die Installationsdatei für das Betriebssystem Ihrer Wahl herunter.

Für Windows Benutzer: Doppelklicken Sie auf die heruntergeladene *. exe l*-Datei und folgen Sie den Anweisungen im Installationsfenster.

Für *Linux* Benutzer, laden Sie eine Datei mit der Erweiterung *.tar.xz* herunter, die extrahiert werden muss. Wenn sie extrahiert ist, gehen Sie in das extrahierte Verzeichnis und öffnen Sie das Terminal in diesem Verzeichnis. Zwei *.sh* Skripte müssen ausgeführt werden, das erste namens *arduino-linux-setup.sh* und das zweite heißt *install.sh*.

Um das erste Skript im Terminal auszuführen, öffnen Sie das Terminal im extrahierten Ordner und führen Sie den folgenden Befehl aus:

sh arduino-linux-setup.sh user_name

user_name - ist der Name eines Superusers im Linux-Betriebssystem. Ein Passwort für den Superuser muss beim Start des Befehls eingegeben werden. Warten Sie einige Minuten, bis das Skript vollständig abgeschlossen ist.

Das zweite Skript mit der Bezeichnung *install.sh*-Skript muss nach der Installation des ersten Skripts verwendet werden. Führen Sie den folgenden Befehl im Terminal (extrahiertes Verzeichnis) aus: **sh install.sh**

Nach der Installation dieser Skripte gehen Sie zu *All Apps*, wo die *Arduino-IDE* installiert ist.

Fast alle Betriebssysteme werden mit einem vorinstallierten Texteditor ausgeliefert (z.B. *Windows* mit *Notepad*, *Linux* Ubuntu mit *Gedit*, *Linux Raspbian* mit *Leafpad* usw.). Alle diese Texteditoren sind für den Zweck des eBooks vollkommen in Ordnung.

Zunächst ist zu prüfen, ob Ihr PC ein Arduino-Board erkennen kann. Öffnen Sie die frisch installierte Arduino-IDE, und gehen Sie zu:

Tools > Board > {your board name here}

{your board name here} sollte der *Arduino/Genuino Uno* sein, wie es auf dem folgenden Bild zu sehen kann:

Der Port, an den das Arduino-Board angeschlossen ist, muss ausgewählt werden. Gehe zu: *Tools > Port > {port name goes here}* und wenn das Arduino-Board an den USB-Port angeschlossen ist, ist der Portname im Drop-down Menü auf dem vorherigen Bild zu sehen.

Wenn die Arduino-IDE unter Windows verwendet wird, lauten die Portnamen wie folgt:

Für *Linux* Benutzer, ist zum Beispiel der Portname /*dev/ttyUSBx*, wobei x für eine ganze Zahl zwischen 0 und 9 steht.

Wie man den Raspberry Pi und Python einrichtet

Für den Raspberry Pi muss zuerst das Betriebssystem installiert werden, dann muss alles so eingerichtet werden, dass es im *Headless*-Modus Der *Headless*-Modus verwendet werden kann. ermöglicht eine Fernverbindung zum Raspberry Pi, ohne dass ein PC-Bildschirm, eine Maus oder eine Tastatur erforderlich ist. Die einzigen Dinge, die in diesem Modus verwendet werden. sind der Raspberry Pi selbst. die Stromversorgung und die Internetverbindung. Das alles wird in dem kostenlosen eBook ausführlich erklärt:

Raspberry Pi Quick Startup Guide

Das Betriebssystem Raspbian wird mit vorinstalliertem *Python* ausgeliefert.

Verbindung des Moduls mit dem Uno

Verbinden Sie das Modul mit dem Uno, wie unten abgebildet:

Sensor Pin	>	Uno Pin	
VCC	>	5V	Roter Draht
X_OUT	>	A2	Blauer Draht
Y_OUT	>	A1	Blauer Draht
Z_OUT	>	A0	Blauer Draht
GND	>	GND	Schwarzer Draht

Sketch-Beispiel

```
uint16_t x_axis = 0;
uint16_t y_axis = 0;
uint16_t z_axis = 0;
void setup() {
  Serial.begin(9600);
}
void loop() {
  x_axis = analogRead(A0);
  y_axis = analogRead(A1);
  z_axis = analogRead(A2);
  Serial.print("X_axis: ");
  Serial.print(x_axis);
  Serial.print ("\t");
  Serial.print("Y_axis: ");
  Serial.print(y_axis);
  Serial.print("\t");
  Serial.print("Z_axis: ");
  Serial.println(z_axis);
  delay(500);
}
```

Laden Sie den Sketch in den Serial Monitor (*Tools > Serial Monitor*). Die Ausgabe sollte wie folgt aussehen:

💿 COM5					_		×
							Send
X_axis: 297	Y_axis: 305	Z_axis: 313					^
X_axis: 401	Y_axis: 440	Z_axis: 445					
X_axis: 430	Y_axis: 458	Z_axis: 460					
X_axis: 484	Y_axis: 514	Z_axis: 510					
X_axis: 519	Y_axis: 551	Z_axis: 550					
X_axis: 521	Y_axis: 535	Z_axis: 527					
X_axis: 761	Y_axis: 865	Z_axis: 858					
X_axis: 793	Y_axis: 845	Z_axis: 836					
X_axis: 717	Y_axis: 733	Z_axis: 725					
X_axis: 341	Y_axis: 229	Z_axis: 221					
X_axis: 96	Y_axis: 0	Z_axis: 0					
X_axis: 99	Y_axis: 28	Z_axis: 28					
X_axis: 328	Y_axis: 365	Z_axis: 372					
X_axis: 166	Y_axis: 101	Z_axis: 110					
X_axis: 197	Y_axis: 176	Z_axis: 183					
X_axis: 293	Y_axis: 311	Z_axis: 320					
X_axis: 380	Y_axis: 408	Z_axis: 414					
X_axis: 434	Y_axis: 464	Z_axis: 466					
X_axis: 526	Y_axis: 573	Z_axis: 575					
X_axis: 482	Y_axis: 476	Z_axis: 464					
X_axis: 483	Y_axis: 485	Z_axis: 475					
X_axis: 338	Y_axis: 288	Z_axis: 277					~
Autoscroll	Show timestamp		Newline	✓ 9600 baud	~	Clear	output

Externer Analog-Digital-Wandler

Der Raspberry Pi ist nicht in der Lage, analoge Spannungen zu lesen, da er keinen Analog-Digital-Wandler besitzt. Um mit dem Raspberry Pi Analogspannungen lesen zu können, müssen Sie einen externen Analog-Digital-Wandler verwenden. AZ-Delivery bietet hierfür den *ADS1115 Analog to digital Converter* an.

Das *ADS1115* Modul hat eine digitale Präzision von 16 Bit und verwendet eine I2C-Schnittstelle, um Daten an den Mikrocontroller zu senden. Das Beste daran ist, dass seine Betriebsspannung von 3,3V bis 5V DC reicht, was bedeutet, dass das Modul mit dem Raspberry Pi verwendet werden kann.

Für weitere Informationen empfehlen wir Ihnen das kostenlose eBook: ADS1115 Analog to digital converter Quick Starter Guide

Um dieses eBook runterzuladen, gehen sie zu:

https://www.az-delivery.com/products/kostenfreies-e-book-ads1115-analogdigitalwandler?pos=3&sid=fd4e7cb0d&ss=r

Das Modul kann sowohl positive als auch negative Spannungen lesen. Das erste Bit im Digitalwert ist für das Vorzeichen (positive oder negative Spannung), was bedeutet, dass die tatsächliche Genauigkeit des Moduls *15* Bit beträgt, wobei das *16*. Bit das Vorzeichenbit ist.

Außerdem hat das Modul vier analoge Eingangspins und vier verschiedene *I2C*-Adressen. In diesem eBook wird die standardmäßige *I2C*-Adresse (*ADDR*-Pin nicht verbunden) verwendet, und im nächsten Skriptbeispiel wird der analoge Eingangspin *0* verwendet. Sie können jeden der On-Board Analog-Pins (von 0 bis 3) verwenden.

Zum Beispiel ist der ADC im Modul ADS1115 viel genauer als der ADC im Arduino Uno.

Verbindung des ADS1115 mit dem Raspberry Pi

Verbinden Sie das ADS1115 Modul mit dem Raspberry Pi, wie unten abgebildet:

ADS1115 Pin	>	Raspber	ry Pi Pin	
VDD	>	3V3	[pin 1]	Roter Draht
SDA	>	GPIO 2	[pin 3]	Lila Draht
SCL	>	GPIO 3	[pin 5]	Grüner Draht
GND	>	GND	[pin 9]	Schwarzer Draht
ADS1115 Pin	>	Potentio	meter Pin	
A0	>	Middle pir	n	Blauer Draht
Rasp. Pi Pin	>	Potentio	meter Pin	
GND [pin 14]	>	Top pin		Schwarzer Draht
3V3 [pin 17]	>	Bottom pi	in	Oranger Draht

Hier wird der Potentiometer nur als Beispiel verwendet.

Libraries und Tools für Python

Um das Modul mit dem Raspberry Pi zu verwenden, wird empfohlen, eine externe Library dafür herunterzuladen. Die Library, die in diesem eBook verwendet wird, heißt *Adafruit_Python_ADS1x15*.

Bevor Sie die Library verwenden können, müssen folgende Befehle ausgeführt werden:

sudo apt-get update

sudo apt-get install build-essential python3-dev python3-smbus2
git

Als nächstes laden Sie die externe Library, indem Sie folgende Befehle ausführen:

git clone https://github.com/adafruit/Adafruit_Python_ADS1x15

Um Sie zu installieren, ändern Sie das Verzeichnis von *Adafruit_Python_ADS1x15*, indem Sie folgende Befehle ausführen:

cd Adafruit_Python_ADS1x15

und installieren die Library, indem Sie folgende Befehle ausführen: sudo python3 setup.py install

Aktivieren der I2C-Schnittstelle

Um den Bildschirm mit einer Raspberry Pi zu verwenden, muss zunächst die SPI-Schnittstelle in Raspbian aktiviert werden. Gehen Sie dafür zu: *Application Menu > Preferences > Raspberry Pi Configuration*

Als nächstes öffnen Sie die Registerkarte *Interfaces/Schnittstelle*, stellen Sie die SPI-Radiobuttons auf *Ok* und aktivieren Sie es, wie unten abgebildet:

Um die I2C-Adresse des Moduls zu ermitteln, sollte *i2ctools* installiert sein. Falls dies nicht der Fall ist, können Sie folgenden Befehl im Terminal-Fenster ausführen: **sudo apt-get install i2ctools -y**

Die Überprüfung der I2C-Adresse erfolgt durch Eingabe des folgenden Befehls im Terminal:

i2cdetect -y 1

Die Ausgabe im Terminal sollte wie folgt aussehen:

pi@raspberrypi: ~	~	^	×
File Edit Tabs Help			
pi@raspberrypi:~ \$ i2cdetect -y 1 0 1 2 3 4 5 6 7 8 9 a b c d e f			Î
00:			
20:			
50:			
70: pi@raspberrypi:~ \$			Į

Die I2C-Addresse des Moduls ist 0x48.

Wenn die I2C-Schnittstelle auf dem Raspberry Pi nicht aktiviert ist, und der vorherige Befehl ausgeführt wurde, wird folgende Fehlermeldung angezeigt:

Test-Skript für das ADS1115 Modul

```
import time
import Adafruit_ADS1x15
```

```
adc = Adafruit_ADS1x15.ADS1115() # Create an ADS1115 ADC
GAIN = 1
```

```
print('[Press CTRL + C to end the script!]')
try: # Main program loop
while True:
    # ADC channel 0 value
    values = adc.read_adc(0, gain=GAIN)
    print('{:>6}'.format(values))
    time.sleep(0.5)
```

```
# Scavenging work after the end of the program
except KeyboardInterrupt:
    print('\nScript end!')
```


Speichern Sie das Skript unter dem Namen *AnalogRead.py*. Um das Skript auszuführen, öffnen Sie das Terminal in dem Verzeichnis, in dem das Skript gespeichert ist, und führen Sie den folgenden Befehl aus:

python3 AnalogRead.py

Die Ausgabe sollte wie folgt aussehen:

				pi@raspberrypi: ~/Scripts	~	^	×
File	Edit	Tabs	Help				
pi@ras [press 26380 26380 26380 26380 20364 1472: 10139 3912 (12649 1984 24532 26380 26380 26380 26380 26380 26380 26380	spbern s ctrl 3 5 9 4 1 5 5 9 4 1 5 5 9 7 7 7 7 3 1 9 7 7 7 3 1 1 9 7 7 7 3 1 1 9 7 7 7 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	rypi:~/	Scripts	<pre>\$ python3 AnalogRead.py script] </pre>			

Um das Skript zu beenden drücken Sie STRG + C auf der Tastatur.

Um die dieselben Ausgangswerte, wie oben abgebildet, zu erhalten, bewegen Sie die Potentiometerwelle.

Um das *adc*-Objekt zu erstellen und zu initialisieren, wird folgende Codezeile verwendet:

```
adc = Adafruit_ADS1x15.ADS1115()
```

Die ADC-Daten werden mit der folgenden Codezeile gelesen: adc.read_adc(0, *gain*=GAIN)

Wobei *0* der ADC Pinname ist, welcher einer der Folgenden sein kann: *0*, *1*, *2* oder *3*. Dabei ist *GAIN* auf *1* gestellt. Sie können Ihn auf einen der folgenden Werte ändern:

GAIN	>	Spannungsstufen
0.66 (2/3)	>	±6.144V
1	>	±4.096V
2	>	±2.048V
4	>	±1.024V
8	>	±0.512V
16	>	±0.256V

Die ADC-Daten werden mit der folgenden Codezeile in *values* gespeichert:

values = adc.read_adc(0, gain=GAIN)

Verbindung des Moduls mit dem Raspberry Pi

Verbinden Sie das GY-61 Modul mit dem Raspberry Pi, wie unten abgebildet:

Sensor Pin	>	Raspber	ry Pi Pin	
VCC	>	3V3 [pir	n 17]	Roter Draht
GND	>	GND [pir	n 20]	Schwarzer Draht
Sensor Pin	>	ADS111	5 Pin	
X_OUT	>	A2		Oranger Draht
Y_OUT	>	A1		Oranger Draht
Z_OUT	>	A0		Oranger Draht
ADS1115 Pin	>	Raspber	ry Pi Pin	
VDD	>	3V3	[pin 1]	Roter Draht
GND	>	GND	[pin 9]	Schwarzer Draht
SDA	>	GPIO2	[pin 3]	Grüner Draht
SCL	>	GPIO3	[pin 5]	Blauer Draht

Python-Skript

```
import time
from ADS1x15 import ADS1115
adc = ADS1115()
GAIN = 1
values = list()
print('Press CTRL + C to end the script!')
try:
  while True:
    for i in range(3):
      values.append(adc.read_adc(i, gain=GAIN))
    print('X axis:{:>6}\tY axis:{:>6}\tZ axis:{:>6}'.
      format(values[2], values[1], values[0]))
    time.sleep(5)
    values = list()
except KeyboardInterrupt:
  print('\nScript end!')
```


Speichern Sie das Skript unter dem Namen *gy61.py*. Um das Skript auszuführen, öffnen Sie das Terminal in dem Verzeichnis, in dem das Skript gespeichert ist, und führen Sie den folgenden Befehl aus:

python3 gy61.py

Die Ausgabe sollte wie folgt aussehen:

pi@raspberrypi: ~/ADS1115	~	^	×
File Edit Tabs Help			
pi@raspberrypi:~ \$ python3 gy61.py [Press CTRL + C to end the script!] X avis: 12918 - V avis: 13146 - 7 avis: 15900			Î
X axis: 12917 Y axis: 13143 Z axis: 15885 X axis: 13163 Y axis: 12991 Z axis: 10695			
X axis: 12917 - Y axis: 13164 - Z axis: 15879 X axis: 15671 - Y axis: 13107 - Z axis: 13463 X axis: 10421 - Y axis: 13105 - Z axis: 13177			l
X axis: 12925 - Y axis: 13307 - Z axis: 15878 X axis: 12862 - Y axis: 10514 - Z axis: 13464 X axis: 13141 - Y axis: 15699 - Z axis: 13122			I
X axis: 12922 Y axis: 13281 Z axis: 15879 ^C Script end! pi@reenberrupi: \$			
pl@raspberryp1:~ 5			

Um das Skript zu beenden drücken Sie STRG + C auf der Tastatur.

Sie haben es geschafft. Sie können jetzt unser Modul für Ihre Projekte nutzen.

Jetzt sind Sie dran! Entwickeln Sie Ihre eigenen Projekte und Smart-Home Installationen. Wie Sie das bewerkstelligen können, zeigen wir Ihnen unkompliziert und verständlich auf unserem Blog. Dort bieten wir Ihnen Beispielskripte und Tutorials mit interessanten kleinen Projekten an, um schnell in die Welt der Mikroelektronik einzusteigen. Zusätzlich bietet Ihnen auch das Internet unzählige Möglichkeiten, um sich in Sachen Mikroelektronik weiterzubilden.

Falls Sie nach weiteren hochwertigen Produkten für Arduino und Raspberry Pi suchen, sind Sie bei AZ-Delivery Vertriebs GmbH goldrichtig. Wir bieten Ihnen zahlreiche Anwendungsbeispiele, ausführliche Installationsanleitungen, E-Books, Bibliotheken und natürlich die Unterstützung unserer technischen Experten.

https://az-delivery.de

Viel Spaß!

Impressum

https://az-delivery.de/pages/about-us