New KA2284 Batterie Indicator Audio Power Level Indicator Modul Tafel

Description

The KA2284 Voltage Level Indicator Module provides a logarithmic visual indication of a static or dynamic voltage level using LEDs.

PACKAGE INCLUDES:

• KA2284 Voltage Level Indicator Module

KEY FEATURES OF KA2284 VOLTAGE LEVEL INDICATOR MODULE:

- Uses KA2284 5-Dot LED Level Meter Driver w/ built-in rectifying amplifier
- Adjustable voltage range with LED display
- Use with AC or DC voltages
- 3.5 to 16V operation

The module can be used to indicate a voltage level such as for monitoring a DC battery level or for use with AC signals to implement a VU meter for audio strength or similar applications.

The module uses the KA2284 LED Dot Level Meter Driver IC to implement a logarithmic LED dot indicator display. The display consists of 5 LEDs – 3 green, 1 yellow and 1 red which are lit in sequence as the input voltage increases.

A single-turn potentiometer is used to set the range for the display.

The input for the voltage measurement includes a series capacitor for use with AC waveforms. There is a small jumper on the board which shorts this capacitor so that the module can be used with a DC signal such as when monitoring battery.

- Jumper OFF = Monitor AC voltage
- Jumper ON = Monitor DC voltage

The module can be powered off a wide voltage range of 3.5 to 16V

Module Connections

There is a 4-pin header on the assembly for making connections.

1 x 4 Header

- VCC = Connect to 3.5 to 16V
- IN = Input. The voltage to be measured by the device
- **GND** = Ground. There are 2 ground pins, but only one needs to be used
- **GND** = Ground. There are 2 ground pins, but only one needs to be used

INTRODUCTION

The KA2284B and KA2285B are monolithic integrated circuits designed for 5-dot LED level meter drivers with a built-in rectifying amplifier. It is suitable for AC/DC level meters such as VU meters or signal meters.

FEATURES

- High gain rectifying amplifier included (G_V = 26dB)
- · Low radiation noise when LED turns on
- Logarithmic indicator for 5-dot bar type LED (-10, -5, 0, 3, 6dB)
- Constant current output KA2284B: lo = 15mA (Typ) KA2285B: lo = 7mA (Typ)
- Wide operating supply voltage range:
 V_{CC} = 3.5V ~ 1 6V
- · Minimum number of external parts required

ORDERING IN FORMATION

Device	Package	Operating Temperature	I _D
KA2284B	9-SIP	– 20°C ~ + 80°C	15mA
KA2285B	3 311	20 0 1 00 0	7mA

BLOCK DIAGRAM

Figure 1.

NOTE: Capacitor to be omitted when used as a DC input signal meter

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{CC}	18	V
Amp Input Voltage	V ₈₋₅	−0.5 ~ V _{CC}	V
Pin 7 Voltage	V ₇₋₅	6	V
D Terminal Output Voltage	V _D	18	V
Circuit Current	I _{CC}	12	mA
D Terminal Output Current	I _D	20	mA
Power Dissipation	P _d	1100	mW
Operating Temperature	T _{OPR}	−20 ~ + 80	°C
Storage Temperature	T _{STG}	−40 ~ + 125	°C

NOTE: $11 \text{mW}/^{\circ}\text{C}$ is decreased at higher temperature than $T_a = 25^{\circ}\text{C}$.

ELECTRICAL CHARACTERISTICS

 $(T_a = 25^{\circ}C, V_{CC} = 6V, f = 1kHz, unless otherwise specified)$

Characteristic		Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Circuit Current		I _{CCQ}	V _i = 0V	_	6	8.5	mA	
D Output Current	KA228	34B	l _O V _i = 0.15V	11	15	18.5	mΛ	
	KA228	35B		v _i = 0.13v	5	7	9.5	mA
Input Bias Current		I _{BIAS}	_	-1	_	0	μА	
Amp Gain		G _V	V _I = 0.1 V	24	26	28	dB	
Comparator ON Level V _{CL (ON)}			V _{CL(ON)1}	_	-12	-10	-8	dB
			V _{CL(ON)2}		-6	-5	-4	
		I V _{CL (ON)}	V _{CL(ON)3}		_	0	_	
			V _{CL(ON)4}		2.5	3	3.5	
			V _{CL(ON)5}		5	6	7	

NOTE: Definition of 0dB: input voltage level when $V_{CL\;(ON)3}$ turn ON (50mV)

TEST CIRCUIT

Figure 2.

The recommended value of R at T_a (max) = 60°C.

V _{CC} (V)	8 ~ 12	10 ~ 14	12 ~ 16
$R(\Omega)$	47	68	91

By changing the time constant C_1 and C_2 , the response, attack and release time may be varied. In the above application conditions, power dissipation may be operated at higher levels than the absolute maximum ratings. The wattage of R is to be determined by the total LED current and R value recommended by the R table.

Comment	Description	Designator	Footprint	LibRef	Quantity
10uF	Polarized Capacitor (Radial)	C1	CAPPR2-5x6.8	Cap Pol1	1
2.2uF	Polarized Capacitor (Radial)	C2	CAPPR2-5x6.8	Cap Pol1	1
LED	Typical INFRARED GaAs LED	D1, D2, D3, D4, D5	LED-3	LED	5
Header 4	Header, 4-Pin	P1	HDR1X4	Header 4	1
	Header, 2-Pin	P2	HDR1X2	Header 2	1
47	Resistor	R1	AXIAL-0.3	Res1	1
10K	Resistor	R2	AXIAL-0.3	Res1	1
10K	Potentiometer	RP1	RM063	RPot	1
KA2284		U1	HDR1X9	KA2284	1