Willkommen!

Und herzlichen Dank für den Kauf unseres AZ-Delivery 35 in 1 Arduino-Sensorenund Zubehörkit! Auf den folgenden Seiten gehen wir mit dir gemeinsam die einzelnen Sensoren von der Einrichtung bis hin zum Programmieren durch. Viel Spaß!

Dein Set enthält:

15. Schüttelsensor	16. Magnetschalter
17. Magnetsensor	18. Thermistor
19. Hallsensor	20. Digitaler Hallsensor
21. Touchsensor	22. Flammensensor
23. Drehschalter	24. IR-Empfänger

25. IR-Sender	26. Farbwechsel-LED
C C C C C C C C C C C C C C C C C C C	
27. IR-Lichtschranke	28. Bicolor LED 3mm
29. Bicolor LED 5mm	30. Schocksensor
31. LDR Widerstand	32. Thermistor
33. Hallsensor	34. DHT11
35. DS18B20	

Installation der Software:

Bevor wir mit dem Programmieren beginnen können, müssen wir uns die Arduino Software von <u>https://www.arduino.cc/en/Main/Software#</u> herunterladen. Nach dem Download und starten wir den Installer und es erscheint folgender Bildschirm:

💿 Arduino Setup: License Agreement 📃 💷 💈	X	
Please review the license agreement before installing Arduino. If you accept all terms of the agreement, click I Agree.		
GNU LESSER GENERAL PUBLIC LICENSE	*	
Version 3, 29 June 2007		
Copyright (C) 2007 Free Software Foundation, Inc. < <u>http://fsf.org/</u> >		
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.		
This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3 of the GNU General Public License, supplemented by the additional permissions listed below.		
Cancel Nullsoft Install System v3.0 I Agree		

Dieses Fenster bestätigen wir mit "I Agree" sofern du die Lizenzbestimmungen akzeptierst.

💿 Arduino Setup: Installation Options 🛛 🗖 🖾		
Check the components you want to install and uncheck the components you don't want to install. Click Next to continue.		
Select components to install:	 Install Arduino software Install USB driver Create Start Menu shortcut Create Desktop shortcut Associate .ino files 	
Space required: 420.6MB		
Cancel Nullsoft Install S	ystem v3,0 <back next=""></back>	

Im nächsten Fenster können wir auswählen, von wo aus wir die Arduino Software starten können und ob wir auch die USB-Treiber mit installieren möchten. Am besten man setzt die Häkchen wie im Bild oben zu sehen ist.

Als nächsten Schritt geben wir das Installationsverzeichnis an, das Standard-Verzeichnis sollte in der Regel stimmen:

💿 Arduino Setup: Installation Folder		23		
Setup will install Arduino in the following folder. To install in a different folder, click Browse and select another folder. Click Install to start the installation.				
Destination Folder				
C:\Program Files (x86)\Arduino Browse				
Space required: 420.6MB Space available: 15.1GB				
Cancel Nullsoft Install System v3.0 < Back	Insta			

Und schon wird die Arduino Software installiert.

💿 Arduino Setup: Installing			23
Extract: cc1.exe		 	
Show details			
Cancel Nullsoft Install System v3,0	< Back	Clos	e

Mit Close wird der Installer anschließend beendet und im Startmenü und Desktop befindet sich ein neues Symbol. Dieses starten wir jetzt:

Es startet die Arduino Software:

Und das Programmierfenster erscheint:

Jetzt können wir mit dem Programmieren beginnen.

Erste Schritte in der Arduino Programmiersoftware

Bevor wir mit dem Sensorkit beginnen können, müssen wir in der Software auch unseren Arduino (den du separat bei uns bestellen kannst) definieren.

Dazu wählen wir in der Software:

Werkzeuge > Board: > {Hier deinen Arduino auswählen} Arduino Uno

In der Anleitung verwenden wir einen Arduino Uno. Aber auch andere Arduino funktionieren.

Bei Port musst du nur noch den Com-Port deines Arduino eintragen, diesen kannst du beim Gerätemanager auslesen und ggf. auch abändern.

Das waren die ersten Grundeinstellungen, nun können wir mit dem Programmieren beginnen.

1. Joystick

Verdrahten des Joysticks

+5V wird mit 5V am Arduino verbunden GND wird mit GND verbunden VRx wird mit A1 verbunden VRy wird mit A0 verbunden MS wird mit D7 verbunden Rote Leitung Schwarze Leitung Gelbe Leitung Grüne Leitung Blaue Leitung

Software für den Joystick

```
int value = 0;
void setup() {
pinMode(7, INPUT PULLUP);
Serial.begin(9600);
}
void loop() {
value = analogRead(0);
Serial.print("X:");
Serial.print(value, DEC);
value = analogRead(1);
Serial.print(" | Y:");
Serial.print(value, DEC);
                              // ! Invertiert wegen Pullup
value = !digitalRead(7);
Serial.print(" | Z: ");
Serial.println(value, DEC);
delay(100);
}
```

Nachdem wir den Code geschrieben haben klicken wir oben auf 🗹 und Verifizieren unser Programm:

Der Sketch verwendet 2432 Bytes (7%) des Programmspeicherplatzes. Das Maximum sind 32256 Bytes. Globale Variablen verwenden 206 Bytes (10%) des dynamischen Speichers, 1842 Bytes für lokale Variablen verbleiben. Das Maximum sind 2

Wenn alles stimmt und unser Programm keine Fehler enthält können wir es auf den

Arduino hochladen. Dazu klicken wir oben auf 💟

Kurz darauf kommt dann: Hochladen abgeschlossen

Jetzt starten wir den Serial Monitor in der Arduino Software:

Werkzeuge > Serial Monitor

Nach dem öffnen muss evtl. unten rechts noch die Baudrate auf 9600 Baud umgestellt werden und schon bekommen wir die Werte unseres Joysticks:

💿 СОМ9		
1		Senden
V.501 V.526 7. 0		
X:501 Y:527 Z: 0		
X:501 Y:527 Z: 0		
X:500 Y:526 Z: 0		
X:501 Y:527 Z: 0		
X:500 Y:831 7:0		
X:501 Y:1023 Z: 0		
X:501 Y:1023 Z: 0		
X:1023 Y:1023 Z: 0		
X:1023 Y:832 Z: 0		
X:1023 Y:527 Z: 0		
X:1023 Y:7 Z: 0		
X:393 Y:370 Z: 0		
X:0 Y:527 Z: 0		
X:0 Y:526 Z: 0		
X:248 Y:647 Z: 1		
X:287 Y:1023 Z: 1		
X:500 Y:524 2: 1		
X:500 1:525 2: 1 X:501 X:0 7: 1		
X:500 Y:0 Z: 1		
X:500 Y:0 Z: 1		
X:0 Y:523 Z: 1		
X:0 Y:825 Z: 0		
X:327 Y:1023 Z: 0		
X:999 Y:1021 Z: 0		
X:783 Y:531 Z: 0		
X:501 Y:527 Z: 0		
X:1023 Y:0 Z: 0		
X:1021 Y:0 Z: 0		
X:3/5 1:52/ 2: 0		
X:0 Y:1023 Z: 0		
X:501 Y:1023 Z: 0		
X:1023 Y:1023 Z: 0		
X:1023 Y:526 Z: 0		
X:1023 Y:0 Z: 0		
X:0 Y:526 Z: 0		
X:501 Y:526 Z: 0		
X:501 Y:527 Z: 0		
X:501 Y:526 Z: 0		
X:501 Y:526 Z: 0		
X:501 Y:526 Z: 0		
X-501 Y-526 7. 0		
X:501 Y:526 Z: 0		
		+
Autoscroll	Kein Zeilenende	Ausgabe löschan
		Ausgabe loschen

2. Relais

Verdrahten des Relais

+ wird mit 5V am Arduino verbunden
- wird mit GND verbunden
S wird mit D7 verbunden

Rote Leitung Schwarze Leitung Gelbe Leitung

Software für das Relais

```
int Relais = 7;
void setup() {
pinMode(Relais, OUTPUT);
}
void loop() {
digitalWrite(Relais, HIGH);
delay(1000);
digitalWrite(Relais, LOW);
delay(1000);
}
```

Der Code wird wieder Verifiziert 🗹 und Hochgeladen 🕥. Das Relais beginnt nun im Sekundentakt ein und auszuschalten.

3. Großes Mikrofonmodul

Verdrahten des Moduls

+ wird mit 5V am Arduino verbunden
- wird mit GND verbunden
DO wird mit D7 verbunden
AO wird mit A0 verbunden

Rote Leitung Schwarze Leitung Gelbe Leitung Grüne Leitung

Software für das Große Mikrofon:

```
int Led=LED BUILTIN;
int Mikrofon=7;
int PotiPin = A0;
int PotiValue = 0;
int val;
void setup()
{
Serial.begin(9600);
pinMode(Led,OUTPUT);
pinMode (Mikrofon, INPUT);
}
void loop()
{
PotiValue = analogRead(PotiPin);
Serial.println(PotiValue, DEC);
val=digitalRead(Mikrofon);
if(val==HIGH)
  {
    digitalWrite(Led, HIGH);
  }
  else
  {
    digitalWrite(Led, LOW);
  }
}
```

Der Code wird wieder Verifiziert van der Hochgeladen . Im SerialMonitor wird nun der Wert des Potentiometers ausgegeben. Wird am Mikrofon ein stärkeres Signal aufgenommen, so leuchtet die eingebaute LED am Arduino. Mit dem Mikrofon kann man nun einen Klatschsensor bauen.

COM9	
	Senden
534	A
534	
534	
534	
534	
534	
534	
534	
534	
534	
534	
534	
534	
534	
534	
534	

4. Kleines Mikrofonmodul

Verdrahten des Moduls

+ wird mit 5V am Arduino verbunden
- wird mit GND verbunden
DO wird mit D7 verbunden
AO wird mit A0 verbunden

Rote Leitung Schwarze Leitung Gelbe Leitung Grüne Leitung

Software für das kleine Mikrofon:

```
int Led=LED BUILTIN;
int Mikrofon=7;
int PotiPin = A0;
int PotiValue = 0;
int val;
void setup()
{
Serial.begin(9600);
pinMode(Led,OUTPUT);
pinMode (Mikrofon, INPUT);
}
void loop()
{
PotiValue = analogRead(PotiPin);
Serial.println(PotiValue, DEC);
val=digitalRead(Mikrofon);
if(val==HIGH)
  {
    digitalWrite(Led, HIGH);
  }
 else
  {
    digitalWrite(Led,LOW);
  }
}
```

Der Code wird wieder Verifiziert vund Hochgeladen . Im SerialMonitor wird nun der Wert des Potentiometers ausgegeben. Wird am Mikrofon ein stärkeres Signal aufgenommen, so leuchtet die eingebaute LED am Arduino. Mit dem Mikrofon kann man nun einen Klatschsensor bauen.

COM9	
	Senden
534	A
534	
534	
534	
534	
534	
534	
534	
534	
534	
534	
534	
534	
534	
534	

Das große und kleine Mikrofon sind identisch, sie unterscheiden sich nur von der Mikrofonkapsel, das große hat eine größere Empfindlichkeit (electret microphone).

5. Linienfolger Modul

Verdrahten des Moduls

VCC wird mit 5V am Arduino verbunden GND wird mit GND verbunden OUT wird mit D7 verbunden Rote Leitung Schwarze Leitung Gelbe Leitung

Software für den Linienfolger:

```
int Led=LED_BUILTIN;
int Sensor=7;
int val;
void setup()
{
pinMode(Led,OUTPUT);
pinMode(Sensor,INPUT);
}
void loop()
{
val=digitalRead(Sensor);
digitalWrite(Led,val);
}
```

Der Code wird wieder Verifiziert 🖸 und Hochgeladen 💽.

Der Linienfolger folgt einer dunklen (schwarzen) Linie. Der Sensor gibt immer dann ein Signal aus, wenn er die Linie verlassen hat.

Diesen Sensor kann man in einen Roboter einbauen.

6. Hindernissensor

Verdrahten des Moduls

VCC wird mit 5V am Arduino verbunden GND wird mit GND verbunden OUT wird mit D7 verbunden EN wird mit D6 verbunden

Rote Leitung Schwarze Leitung Gelbe Leitung Grüne Leitung

Software für den Hindernissensor:

```
int Led=LED BUILTIN;
int Sensor=7;
int Enable=6;
int val;
void setup()
{
pinMode(Led,OUTPUT);
pinMode(Sensor, INPUT);
pinMode(Enable,OUTPUT);
digitalWrite(Enable, HIGH); //ohne Funktion
}
void loop()
{
val=digitalRead(Sensor);
digitalWrite(Led, val);
}
```

Der Code wird wieder Verifiziert 🗹 und Hochgeladen 💽.

Der Hindernissensor gibt ein Signal, wenn sich ein Gegenstand nähert.

Diesen Sensor kann man in einen Roboter einbauen.

Der Pin EN (Enable) kann auch nicht angeschlossen werden, dieser hat keinerlei Auswirkung auf den Sensor.

7. Taster

Verdrahten des Moduls

+ wird mit 5V am Arduino verbunden
- wird mit GND verbunden
S wird mit D7 verbunden

Rote Leitung Schwarze Leitung Gelbe Leitung

Software für den Taster:

int Led = LED_BUILTIN; int Taster = 7; int value; void setup () { pinMode (Led, OUTPUT); pinMode (Taster, INPUT); } void loop () { value=digitalRead(Taster); digitalWrite (Led, !value); }

Der Code wird wieder Verifiziert 🗹 und Hochgeladen 오.

Sobald der Taster betätigt wird, beginnt die LED am Arduino zu leuchten.

8. Laser

fritzing

Verdrahten des Moduls

- wird mit **GND** verbunden **S** wird mit **D7** verbunden Schwarze Leitung Gelbe Leitung

ACHTUNG: Nicht direkt in den Laser sehen!!!

Software für den Laser:

```
int Laser = 7;
void setup() {
  pinMode(Laser, OUTPUT);
}
void loop() {
  digitalWrite(Laser, HIGH);
  delay(100);
  delay(100);
}
```

Der Code wird wieder Verifiziert 🔽 und Hochgeladen 💽.

Die Laserdiode blinkt nun mit 5Hz.

9. RGB-LED

Verdrahten des Moduls

GND wird mit GND verbundenR wird mit D7 verbundenG wird mit D6 verbundenB wird mit D5 verbunden

Schwarze Leitung Rote Leitung Grüne Leitung Blaue Leitung

Software für die RGB-LED:

```
int ROT = 7;
int GRUEN = 6;
int BLAU = 5;
void setup() {
 pinMode(ROT, OUTPUT);
 pinMode(GRUEN, OUTPUT);
 pinMode(BLAU, OUTPUT);
}
void loop() {
 digitalWrite(ROT, HIGH);
  digitalWrite(GRUEN, LOW);
 digitalWrite(BLAU, LOW);
delay(500);
  digitalWrite(ROT, LOW);
  digitalWrite(GRUEN, HIGH);
 digitalWrite(BLAU, LOW);
delay(500);
 digitalWrite(ROT, LOW);
 digitalWrite(GRUEN, LOW);
 digitalWrite(BLAU, HIGH);
delay(500);
  digitalWrite(ROT, HIGH);
  digitalWrite(GRUEN, HIGH);
 digitalWrite(BLAU, LOW);
delay(500);
 digitalWrite(ROT, LOW);
  digitalWrite(GRUEN, HIGH);
  digitalWrite(BLAU, HIGH);
delay(500);
  digitalWrite(ROT, HIGH);
  digitalWrite(GRUEN, HIGH);
  digitalWrite(BLAU, HIGH);
delay(500);
  digitalWrite(ROT, HIGH);
  digitalWrite(GRUEN, LOW);
 digitalWrite(BLAU, HIGH);
delay(500);
}
```

Der Code wird wieder Verifiziert 🗹 und Hochgeladen 💽

Die RGB-LED wird nun durch 3 Pins angesteuert und zeigt verschiedene Farben abwechselnd an.

10. SMD RGB-LED

Verdrahten des Moduls

GND wird mit GND verbundenR wird mit D7 verbundenG wird mit D6 verbundenB wird mit D5 verbunden

Schwarze Leitung Rote Leitung Grüne Leitung Blaue Leitung

Software für die RGB-LED:

```
int ROT = 7;
int GRUEN = 6;
int BLAU = 5;
void setup() {
 pinMode(ROT, OUTPUT);
 pinMode(GRUEN, OUTPUT);
 pinMode(BLAU, OUTPUT);
}
void loop() {
 digitalWrite(ROT, HIGH);
  digitalWrite(GRUEN, LOW);
 digitalWrite(BLAU, LOW);
delay(500);
  digitalWrite(ROT, LOW);
  digitalWrite(GRUEN, HIGH);
 digitalWrite(BLAU, LOW);
delay(500);
 digitalWrite(ROT, LOW);
 digitalWrite(GRUEN, LOW);
 digitalWrite(BLAU, HIGH);
delay(500);
  digitalWrite(ROT, HIGH);
  digitalWrite(GRUEN, HIGH);
 digitalWrite(BLAU, LOW);
delay(500);
 digitalWrite(ROT, LOW);
  digitalWrite(GRUEN, HIGH);
  digitalWrite(BLAU, HIGH);
delay(500);
  digitalWrite(ROT, HIGH);
  digitalWrite(GRUEN, HIGH);
  digitalWrite(BLAU, HIGH);
delay(500);
  digitalWrite(ROT, HIGH);
  digitalWrite(GRUEN, LOW);
 digitalWrite(BLAU, HIGH);
delay(500);
}
```

Der Code wird wieder Verifiziert 🗹 und Hochgeladen 💽

Die RGB-LED wird nun durch 3 Pins angesteuert und zeigt verschiedene Farben abwechselnd an.

11. Aktiver Buzzer

Verdrahten des Moduls

- wird mit **GND** verbunden **S** wird mit **D7** verbunden

Schwarze Leitung Gelbe Leitung

Software für den Aktiven Buzzer:

```
int Buzzer = 7;
void setup() {
  pinMode(Buzzer, OUTPUT);
}
void loop() {
  digitalWrite(Buzzer, HIGH);
  delay(1000);
  digitalWrite(Buzzer, LOW);
  delay(1000);
}
```

Der Code wird wieder Verifiziert 🔽 und Hochgeladen 💽.

Der Buzzer Piept immer für 1 Sekunde und macht dann eine Pause. Du kannst diesen Buzzer als Bestätigungstongeber verwenden.

12. Passiver Buzzer

Verdrahten des Moduls

- wird mit **GND** verbunden **S** wird mit **D10** verbunden

Schwarze Leitung Gelbe Leitung

Software für den Passiven Buzzer:

```
int Buzzer = 7;
void setup() {
pinMode(Buzzer, OUTPUT);
}
void loop() {
digitalWrite(Buzzer, HIGH);
delay(1);
digitalWrite(Buzzer, LOW);
delay(1);
}
```

Der Code wird wieder Verifiziert 🗹 und Hochgeladen 💽.

Der Buzzer gibt nun einen Ton mit ca. 500Hz aus. Dieser Buzzer ist ähnlich wie ein Lautsprecher.

Musik mit dem Passiven Buzzer:

Der Arduino kann auch mit PWM Musik abspielen, anbei ein kleines Beispiel mit Pirates of the Caribbean Song:

https://github.com/xitangg/-Pirates-of-the-Caribbean-Theme-Song

```
const int buzzer = 10;
const int songspeed = 1.0;
                            *****
//*******************
#define NOTE C4 262
#define NOTE D4 294
#define NOTE E4 330
#define NOTE_F4 349
#define NOTE G4
                 392
#define NOTE A4 440
#define NOTE_B4 494
#define NOTE C5 523
#define NOTE D5 587
#define NOTE E5
                 659
#define NOTE F5 698
#define NOTE_G5 784
#define NOTE_A5 880
#define NOTE B5 988
                       ******
               ******
int notes[] = {
   NOTE_E4, NOTE_G4, NOTE_A4, NOTE_A4, 0,
   NOTE A4, NOTE B4, NOTE C5, NOTE C5, 0,
NOTE C5, NOTE D5, NOTE B4, NOTE B4, 0,
   NOTE_A4, NOTE_G4, NOTE_A4, 0,
NOTE_E4, NOTE_G4, NOTE_A4, NOTE_A4, 0,
   NOTE_A4, NOTE_B4, NOTE_C5, NOTE_C5, 0,
   NOTE C5, NOTE D5, NOTE B4, NOTE B4, 0,
   NOTE A4, NOTE G4, NOTE A4, 0,
   NOTE_E4, NOTE_G4, NOTE_A4, NOTE_A4, 0,
   NOTE A4, NOTE C5, NOTE D5, NOTE D5, 0,
   NOTE_D5, NOTE_E5, NOTE_F5, NOTE_F5, 0,
   NOTE E5, NOTE D5, NOTE E5, NOTE A4, 0,
   NOTE_A4, NOTE_B4, NOTE_C5, NOTE_C5, 0,
   NOTE_D5, NOTE_E5, NOTE_A4, 0,
   NOTE A4, NOTE C5, NOTE B4, NOTE B4, 0,
   NOTE C5, NOTE A4, NOTE B4, 0,
```


NOTE A4, NOTE A4, NOTE_A4, NOTE_B4, NOTE_C5, NOTE_C5, 0, NOTE_C5, NOTE_D5, NOTE_B4, NOTE_B4, 0, NOTE_A4, NOTE_G4, NOTE_A4, 0, NOTE E4, NOTE G4, NOTE A4, NOTE A4, 0, NOTE A4, NOTE B4, NOTE C5, NOTE C5, 0, NOTE_C5, NOTE_D5, NOTE_B4, NOTE_B4, 0, NOTE_A4, NOTE_G4, NOTE_A4, 0, NOTE_E4, NOTE_G4, NOTE_A4, NOTE_A4, 0, NOTE A4, NOTE C5, NOTE D5, NOTE D5, 0, NOTE D5, NOTE E5, NOTE F5, NOTE F5, 0, NOTE_E5, NOTE_D5, NOTE_E5, NOTE_A4, 0, NOTE_A4, NOTE_B4, NOTE_C5, NOTE_C5, 0, NOTE D5, NOTE E5, NOTE A4, 0, NOTE A4, NOTE C5, NOTE B4, NOTE B4, 0, NOTE_C5, NOTE_A4, NOTE_B4, 0, NOTE_E5, 0, 0, NOTE_F5, 0, 0, NOTE E5, NOTE E5, 0, NOTE G5, 0, NOTE E5, NOTE D5, 0, 0, NOTE D5, 0, 0, NOTE C5, 0, 0, NOTE B4, NOTE C5, 0, NOTE B4, 0, NOTE A4, NOTE E5, 0, 0, NOTE F5, 0, 0, NOTE_E5, NOTE_E5, 0, NOTE_G5, 0, NOTE_E5, NOTE_D5, 0, 0, NOTE D5, 0, 0, NOTE C5, 0, 0, NOTE B4, NOTE C5, 0, NOTE B4, 0, NOTE A4 }; int duration[] = { 125, 125, 250, 125, 125, 125, 125, 250, 125, 125, 125, 125, 250, 125, 125, 125, 125, 375, 125, 125, 125, 250, 125, 125, 125, 125, 250, 125, 125, 125, 125, 250, 125, 125, 125, 125, 375, 125, 125, 125, 250, 125, 125, 125, 125, 250, 125, 125, 125, 125, 250, 125, 125, 125, 125, 125, 250, 125, 125, 125, 250, 125, 125, 250, 125, 250, 125, 125, 125, 250, 125, 125, 125, 125, 375, 375, 250, 125, 125, 125, 250, 125, 125, 125, 125, 250, 125, 125, 125, 125, 375, 125, 125, 125, 250, 125, 125, 125, 125, 250, 125, 125, 125, 125, 250, 125, 125, 125, 125, 375, 125, 125, 125, 250, 125, 125, 125, 125, 250, 125, 125, 125, 125, 250, 125, 125, 125, 125, 125, 250, 125, 125, 125, 250, 125, 125, 250, 125, 250, 125, 125, 125, 250, 125, 125, 125, 125, 375, 375, 250, 125, 375, 250, 125, 375, 250, 125, 375, 250, 125, 375, 125, 125, 125, 125, 125, 500, 250, 125, 375, 250, 125, 375, 250, 125, 375, 250, 125, 375, 125, 125, 125, 125, 125, 500 }; void setup() { } void loop() { for (int i=0;i<203;i++) {</pre> int wait = duration[i] * songspeed; tone(buzzer,notes[i],wait); delay(wait);} delay(10000);

13. Lichtschranke

Verdrahten des Moduls

wird mit GND verbunden
wird mit 5V verbunden
S wird mit D7 verbunden

Schwarze Leitung Rote Leitung Gelbe Leitung

Software für die Lichtschranke:

```
int Led = LED_BUILTIN;
int Eingang = 7;
int value;
void setup ()
{
  pinMode (Led, OUTPUT);
  pinMode (Eingang, INPUT);
}
void loop ()
{
  value=digitalRead(Eingang);
  digitalWrite (Led, !value);
}
```

Der Code wird wieder Verifiziert 🗹 und Hochgeladen 💽.

Die LED auf dem Arduino leuchtet immer, wenn die Lichtschranke keinen Gegenstand erkennt. Sobald ein Gegenstand zwischen die Lichtschranke gehalten wird, leuchtet die LED nicht mehr.

14. Schocksensor

Verdrahten des Moduls

wird mit GND verbunden
wird mit 5V verbunden
S wird mit D7 verbunden

Schwarze Leitung Rote Leitung Gelbe Leitung

Software für den Schocksensor:

```
int Led = LED_BUILTIN;
int Eingang = 7;
int value;
void setup ()
{
  pinMode (Led, OUTPUT);
  pinMode (Eingang, INPUT);
}
void loop ()
  {
  value=digitalRead(Eingang);
  digitalWrite (Led, value);
  }
```

Der Code wird wieder Verifiziert 🗹 und Hochgeladen 💽.

Die LED auf dem Arduino leuchtet immer, wenn Schocksensor bewegt wird, je stärker desto mehr blinkt die LED am Arduino. Ist der Sensor in Ruhelage, leuchtet die LED entweder dauerhaft oder gar nicht.

15. Schüttelsensor

Verdrahten des Moduls

wird mit GND verbunden
wird mit 5V verbunden
S wird mit D7 verbunden

Schwarze Leitung Rote Leitung Gelbe Leitung

Software für den Schüttelsensor:

```
int Led = LED_BUILTIN;
int Eingang = 7;
int value;
void setup ()
{
pinMode (Led, OUTPUT);
pinMode (Eingang, INPUT);
}
void loop ()
{
value=digitalRead(Eingang);
digitalWrite (Led, value);
}
```

Der Code wird wieder Verifiziert 🗹 und Hochgeladen 💽.

Die LED auf dem Arduino blinkt immer, wenn der Schüttelsensor geschüttelt wird. Der Sensor ist ähnlich wie der Schocksensor.

16. Magnetschalter (Reedrelais)

Verdrahten des Moduls

wird mit GND verbunden
wird mit 5V verbunden
S wird mit D7 verbunden

Schwarze Leitung Rote Leitung Gelbe Leitung

Software für den Magnetschalter:

```
int Led = LED_BUILTIN;
int Eingang = 7;
int value;
void setup ()
{
  pinMode (Led, OUTPUT);
  pinMode (Eingang, INPUT);
}
void loop ()
  {
  value=digitalRead(Eingang);
  digitalWrite (Led, value);
  }
```

Der Code wird wieder Verifiziert 🗹 und Hochgeladen 💽.

Die LED auf dem Arduino leuchtet, sobald sich ein Magnet dem Reedrelais nähert. Die 2 Metallplättchen ziehen sich in einem Magnetfeld an und schließen den Kontakt.

17. Magnetsensor

Verdrahten des Moduls

+ wird mit 5V am Arduino verbunden
- wird mit GND verbunden
DO wird mit D7 verbunden
AO wird mit A0 verbunden

Rote Leitung Schwarze Leitung Gelbe Leitung Grüne Leitung

Software für den Magnetsensor:

```
int Led=LED BUILTIN;
int Reed=7;
int PotiPin = A0;
int PotiValue = 0;
int val;
void setup()
{
Serial.begin(9600);
pinMode(Led,OUTPUT);
pinMode(Reed, INPUT);
}
void loop()
{
PotiValue = analogRead(PotiPin);
Serial.println(PotiValue, DEC);
val=digitalRead(Reed);
if(val==HIGH)
  {
    digitalWrite(Led, HIGH);
  }
  else
  {
    digitalWrite(Led,LOW);
  }
}
```

Der Code wird wieder Verifiziert vund Hochgeladen . Im SerialMonitor wird nun der Analoge Wert des Potentiometers ausgegeben, wenn kein Magnet in der Nähe ist, Ist ein Magnet in der Nähe, wird nur eine 0 oder 1 am Analogeingang gemessen.

© COM10	
	Senden
661	A
678	
686	
637	
642	
661	
640	
652	
666	
639	
653	
648	
689	
688	
635	
666	
647	
641	
684	

18. Thermistor (Temperaturschalter)

Verdrahten des Moduls

+ wird mit 5V am Arduino verbunden
- wird mit GND verbunden
DO wird mit D7 verbunden
AO wird mit A0 verbunden

Rote Leitung Schwarze Leitung Gelbe Leitung Grüne Leitung

Software für den Thermistor:

```
int Led=LED BUILTIN;
int Sensor=\overline{7};
int PotiPin = A0;
int PotiValue = 0;
int val;
void setup()
{
Serial.begin(9600);
pinMode(Led,OUTPUT);
pinMode(Sensor, INPUT);
}
void loop()
{
PotiValue = analogRead(PotiPin);
Serial.println(PotiValue, DEC);
val=digitalRead(Sensor);
if(val==HIGH)
  {
    digitalWrite(Led, HIGH);
  }
  else
  {
    digitalWrite(Led, LOW);
  }
}
```

Der Code wird wieder Verifiziert vund Hochgeladen . Im SerialMonitor wird nun der Analoge Wert des Potentiometers ausgegeben, wenn die Temperatur über den eingestellten Analogwert geht, wird der Digitale Ausgang geschalten (OnBoard LED leuchtet).

00 COM10	
	Senden
661	A
678	
686	
637	
642	
661	
640	
652	
666	
639	
653	
648	
689	
688	
635	
666	
647	
641	

19. Hallsensensor

Verdrahten des Moduls

+ wird mit 5V am Arduino verbunden
- wird mit GND verbunden
DO wird mit D7 verbunden
AO wird mit A0 verbunden

Rote Leitung Schwarze Leitung Gelbe Leitung Grüne Leitung

Software für den Hallsensor:

```
int Led=LED BUILTIN;
int Sensor=\overline{7};
int PotiPin = A0;
int PotiValue = 0;
int val;
void setup()
{
Serial.begin(9600);
pinMode(Led,OUTPUT);
pinMode(Sensor, INPUT);
}
void loop()
{
PotiValue = analogRead(PotiPin);
Serial.println(PotiValue, DEC);
val=digitalRead(Sensor);
if(val==HIGH)
  {
    digitalWrite(Led, HIGH);
  }
  else
  {
    digitalWrite(Led, LOW);
  }
}
```

Der Code wird wieder Verifiziert vund Hochgeladen . Im SerialMonitor wird nun der Analoge Wert des Potentiometers ausgegeben, wenn das erkannte Magnetfeld über den eingestellten Schwellwert geht, wird der Digitale Ausgang geschalten (OnBoard LED leuchtet).

COM10	
	Senden
661	A
678	
686	
637	
642	
661	
640	
652	
666	
639	
653	
648	
689	
688	
635	
666	

20. Digitaler Hallsensor

Verdrahten des Moduls

+ wird mit 5V am Arduino verbunden
- wird mit GND verbunden
S wird mit D7 verbunden

Rote Leitung Schwarze Leitung Gelbe Leitung

Software für den Hallsensor:

```
int Led = LED_BUILTIN;
int Eingang = 7;
int value;
void setup ()
{
  pinMode (Led, OUTPUT);
  pinMode (Eingang, INPUT);
}
void loop ()
{
  value=digitalRead(Eingang);
  digitalWrite (Led, value);
}
```

Der Code wird wieder Verifiziert 🗹 und Hochgeladen 💽.

Nähert sich dem Hallsensor ein Magnetfeld, wird der Ausgang am Sensor geschalten. Dies geht an einen Eingang des Arduinos, dieser Schaltet die OnBoard LED ein.

21. Touchsensor

Verdrahten des Moduls

+ wird mit 5V am Arduino verbunden
- wird mit GND verbunden
DO wird mit D7 verbunden
AO wird mit A0 verbunden

Rote Leitung Schwarze Leitung Gelbe Leitung Grüne Leitung

Software für den Touchsensor:

```
int Led=LED BUILTIN;
int Sensor=\overline{7};
int PotiPin = A0;
int PotiValue = 0;
int val;
void setup()
{
Serial.begin(9600);
pinMode(Led,OUTPUT);
pinMode(Sensor, INPUT);
}
void loop()
{
PotiValue = analogRead(PotiPin);
Serial.println(PotiValue, DEC);
val=digitalRead(Sensor);
if(val==HIGH)
  {
    digitalWrite(Led, HIGH);
  }
  else
  {
    digitalWrite(Led, LOW);
  }
}
```

Der Code wird wieder Verifiziert vund Hochgeladen . Im SerialMonitor wird nun der Analoge Wert des Potentiometers ausgegeben, berührt man den Touchsensor, wird ein Digitales Signal ausgegeben. Die Empfindlichkeit kann man mit dem Potentiometer einstellen.

💿 СОМ10	
	Senden
661	A
678	
686	
637	
642	
661	
640	
652	
666	
639	
653	
648	
689	
688	
635	
666	

22. Flammensensor

Verdrahten des Moduls

+ wird mit 5V am Arduino verbunden
- wird mit GND verbunden
DO wird mit D7 verbunden
AO wird mit A0 verbunden

Rote Leitung Schwarze Leitung Gelbe Leitung Grüne Leitung

Software für den Flammensensor:

```
int Led=LED BUILTIN;
int Sensor=\overline{7};
int PotiPin = A0;
int PotiValue = 0;
int val;
void setup()
{
Serial.begin(9600);
pinMode(Led,OUTPUT);
pinMode(Sensor, INPUT);
}
void loop()
{
PotiValue = analogRead(PotiPin);
Serial.println(PotiValue, DEC);
val=digitalRead(Sensor);
if(val==HIGH)
  {
    digitalWrite(Led, HIGH);
  }
  else
  {
    digitalWrite(Led, LOW);
  }
}
```

Der Code wird wieder Verifiziert 🕑 und Hochgeladen 💽. Im SerialMonitor wird nun der Analoge Wert des Sensors ausgegeben. Der Sensor reagiert auf Feuer. Wird eine Flamme eines offenen Feuers detektiert, so wird der Digitalausgang geschalten und LED auf dem Arduino beginnt zu leuchten. Die Sensitivität kann wieder mit dem Potentiometer eingestellt werden.

COM10	
	Senden
661	A
678	
686	
637	
642	
661	
640	
652	
666	
639	
653	
648	
689	
688	
635	
666	

23. Drehschalter

Verdrahten des Schalters

+ wird mit 5V am Arduino verbunden
GND wird mit GND verbunden
SW wird mit D7 verbunden
DT wird mit D6 verbunden
CLK wird mit D5 verbunden

Rote Leitung Schwarze Leitung Gelbe Leitung Blaue Leitung Grüne Leitung

Software für den Drehschalter:

```
int DT = 6;
int CLK = 5;
int SW = 7;
int Position = 0;
int Letzte Position = LOW;
int n = LOW;
int Taster = LOW;
int Letzte Taster = LOW;
void setup() {
 pinMode (CLK, INPUT PULLUP);
 pinMode (DT, INPUT PULLUP);
 pinMode (SW, INPUT PULLUP);
 Serial.begin (9600);
}
void loop() {
 n = digitalRead(CLK);
  Taster = !digitalRead(SW);
  if (Taster != Letzte Taster) {
    Serial.print (Position);
    Serial.print ("|");
    Serial.println (Taster);
    delay(10);
    Letzte_Taster = Taster;
  }
  if ((Letzte Position == LOW) && (n == HIGH)) {
    if (digitalRead(DT) == LOW) {
     Position++;
    } else {
      Position--;
    }
    Serial.print (Position);
    Serial.print ("|");
    Serial.println (Taster);
  }
 Letzte Position = n;
}
```

Der Code wird wieder Verifiziert 🗹 und Hochgeladen 🔁. Im SerialMonitor wird nun die aktuelle Drehposition und ob der Taster gedrückt ist ausgegeben.

💿 COM10	
	Senden
11 0	A
12 0	
13 0	
13 1	
12 1	
11 1	
10 1	
10 0	
11 0	
12 0	

24. IR-Empfänger

Verdrahten des Moduls

+ wird mit 5V am Arduino verbunden
- wird mit GND verbunden
S wird mit D7 verbunden

Rote Leitung Schwarze Leitung Gelbe Leitung

Software für den IR-Sensor:

```
int Led = LED_BUILTIN;
int Eingang = 7;
int value;
void setup ()
{
  pinMode (Led, OUTPUT);
  pinMode (Eingang, INPUT);
}
void loop ()
{
  value=digitalRead(Eingang);
  digitalWrite (Led, value);
}
```

Der Code wird wieder Verifiziert 🗹 und Hochgeladen 💽.

Sobald ein IR-Licht empfangen wird, leuchtet die LED am Arduino. Je nachdem wie lange die Signale anliegen, kann daraus ein Code berechnet werden, dieser kann für Fernbedienungen verwendet werden.

25. IR-Sender

Verdrahten des Moduls

wird mit GND verbundenwird mit D7 verbunden

Schwarze Leitung Gelbe Leitung

Software für den IR-Sender:

int IR = 7;

```
void setup() {
pinMode(IR, OUTPUT);
}
void loop() {
digitalWrite(IR, HIGH);
delay(100);
digitalWrite(IR, LOW);
delay(100);
}
```

Der Code wird wieder Verifiziert 🗹 und Hochgeladen 💽.

Die IR-Diode blinkt nun mit 5Hz. Lässt man diese einen entsprechenden Code senden, können diverse Geräte geschalten werden. Das IR-Licht ist nicht sichtbar!

Verdrahten des Moduls

wird mit GND verbundenwird mit D7 verbunden

Schwarze Leitung Gelbe Leitung

Software für die Farbwechsel-LED:

int LED = 7; void setup() { pinMode(LED, OUTPUT); } void loop() {

digitalWrite(LED, HIGH); delay(10000); digitalWrite(LED, LOW); delay(1000); }

Der Code wird wieder Verifiziert 🖸 und Hochgeladen 💽.

Die Farbwechsel-LED wird für 10 Sekunden eingeschalten und dann für 1 Sekunde ausgeschalten. Während den 10 Sekunden leuchtet und blinkt die LED in verschieden farben.

27. IR-Lichtschranke

Verdrahten des Moduls

+ wird mit 5V am Arduino verbunden
- wird mit GND verbunden
S wird mit D7 verbunden

Rote Leitung Schwarze Leitung Gelbe Leitung

Software für den IR-Lichtschranke:

```
int Led = LED_BUILTIN;
int Eingang = 7;
int value;
void setup ()
{
  pinMode (Led, OUTPUT);
  pinMode (Eingang, INPUT);
}
void loop ()
{
  value=digitalRead(Eingang);
  digitalWrite (Led, value);
}
```

Der Code wird wieder Verifiziert 🗹 und Hochgeladen 💽.

Der Sensor besteht auf einer IR-LED und einem IR-Sensor. Legt man einen Finger oder Gegenstand dazwischen, kommt kein Licht mehr auf den Sensor und dieser schaltet ab.

Verdrahten des Moduls

+ wird mit D7 verbunden
- wird mit GND verbunden
S wird mit D6 verbunden

2200hm 2200hm Gelbe Leitung Schwarze Leitung Grüne Leitung

Software für die Bicolor-LED:

```
int LED1 = 7;
int LED2 = 6;
void setup() {
 pinMode(LED1, OUTPUT);
 pinMode(LED2, OUTPUT);
}
void loop() {
  digitalWrite(LED1, HIGH);
  digitalWrite(LED2, LOW);
delay(500);
  digitalWrite(LED1, LOW);
  digitalWrite(LED2, HIGH);
delay(500);
  digitalWrite(LED1, HIGH);
  digitalWrite(LED2, HIGH);
delay(500);
}
```

Der Code wird wieder Verifiziert 🗹 und Hochgeladen 💽.

Die 2-Farben-LED benötigt Vorwiderstände. 220 Ohm sind ein guter Wert. Die LED blinkt nun in allen 3 möglichen Farben. ROT – GRÜN - ORANGE

Verdrahten des Moduls

+ wird mit D7 verbunden
- wird mit GND verbunden
S wird mit D6 verbunden

2200hm 2200hm

Gelbe Leitung Schwarze Leitung Grüne Leitung

Software für die Bicolor-LED:

```
int LED1 = 7;
int LED2 = 6;
void setup() {
 pinMode(LED1, OUTPUT);
 pinMode(LED2, OUTPUT);
}
void loop() {
  digitalWrite(LED1, HIGH);
  digitalWrite(LED2, LOW);
delay(500);
  digitalWrite(LED1, LOW);
  digitalWrite(LED2, HIGH);
delay(500);
  digitalWrite(LED1, HIGH);
  digitalWrite(LED2, HIGH);
delay(500);
}
```

Der Code wird wieder Verifiziert 🗹 und Hochgeladen 💽.

Die 2-Farben-LED mit 5mm Durchmesser benötigt auch Vorwiderstände. 220 Ohm sind auch hier ein guter Wert. Die LED blinkt nun wieder in allen 3 möglichen Farben.

ROT – GRÜN - ORANGE

30. Tap-Sensor

Verdrahten des Moduls

+ wird mit 5V am Arduino verbunden
- wird mit GND verbunden
S wird mit D7 verbunden

Rote Leitung Schwarze Leitung Gelbe Leitung

Software für den IR-Lichtschranke:

```
int Led = LED_BUILTIN;
int Eingang = 7;
int value;
void setup ()
{
  pinMode (Led, OUTPUT);
  pinMode (Eingang, INPUT);
}
void loop ()
  {
  value=digitalRead(Eingang);
  digitalWrite (Led, value);
  }
```

Der Code wird wieder Verifiziert 🗹 und Hochgeladen 💽.

Der Tap-Sensor reagiert auf sehr harte Stöße, er ist ähnlich dem Schocksensor, aber die Schläge müssen um einiges Stärker sein, damit dieser Sensor ein Signal gibt.

Verdrahten des Moduls

+ wird mit 5V am Arduino verbunden
- wird mit GND verbunden
S wird mit A0 verbunden

Rote Leitung Schwarze Leitung Gelbe Leitung

Software für den LDR-Widerstand:

```
void setup() {
   Serial.begin(9600);
   pinMode(A0, INPUT);
}
void loop() {
   int LDR = analogRead(A0);
   Serial.println(LDR);
}
```

Der Code wird wieder Verifiziert 🗹 und Hochgeladen 💽.

Der LDR-Widerstand ändert sich mit der Helligkeit, je dunkler es wird, desto größer ist der Widerstand. Im SerialMonitor wird der aktuelle Analogwert angezeigt.

00 COM10	
	Senden
214	A
209	
214	
219	
214	
214	
216	
215	
211	
212	
213	
211	
212	
21	T

<u>32. Temperaturabhängiger Widerstand (Thermistor)</u>

Verdrahten des Moduls

+ wird mit 5V am Arduino verbunden
- wird mit GND verbunden
S wird mit A0 verbunden

Software für den Thermistor:

```
void setup() {
   Serial.begin(9600);
   pinMode(A0, INPUT);
}
void loop() {
   int Thermistor = analogRead(A0);
   Serial.println(Thermistor);
}
```

Der Code wird wieder Verifiziert 🗹 und Hochgeladen 💽.

Der Temperaturabhängige-Widerstand ändert sich mit der Temperatur, je wärmer es wird, desto kleiner ist der Widerstand. Im SerialMonitor wird der aktuelle Analogwert angezeigt.

	COM10		x	
	<u></u>	Ser	nden	
l	275	 	-	-
l	895			
	894			
l	893			
l	894			
	894			
	895			
	895			
	894			
	894			
	894			
	895			
	894			
l	895			
1	894			
	895			
	893			
	895			
	894			
	895			
	894			
1	895			
	894			
	893			
	894			
1	895			
l	895			
1	894			
	895			
	895			
	695 695			
	695 695			
	895			

33. Hallsensor

Verdrahten des Moduls

+ wird mit 5V am Arduino verbunden
- wird mit GND verbunden
S wird mit A0 verbunden

Software für den Hallsensor:

```
void setup() {
   Serial.begin(9600);
   pinMode(A0, INPUT);
}
void loop() {
   int Hallsensor = analogRead(A0);
   Serial.println(Hallsensor);
}
```

Der Code wird wieder Verifiziert 💟 und Hochgeladen 💽.

Der Hallsensor ändert seinen Wert in einem Magnetfeld. Im SerialMonitor wird der aktuelle Analogwert angezeit.

00 COM10	_		x	
		Send	len]
530				
530				
530				
530				
530				
530				
530				
530				
530				
530				
530				
530				
530				
530				
530				
530				
530				
530				
530				
530				
530				
530				
530				
530				
530				
531				
530				
530				
530				
530				
530				
530				
530				
530				

34. DHT11 Luftfeuchtigkeit und Temperatur

Verdrahten des Moduls

VCC wird mit 5V am Arduino verbunden GND wird mit GND verbunden DATA wird mit D7 verbunden

Software für den DHT11:

Für den Sensor benötigen wir noch eine Bibliothek. Diese installieren wir über die Bibliotheksverwaltung:

Sketch > Bibliothek einbinden > Bibliotheken verwalten

Sketo	h Werkzeuge Hilfe			
	Überprüfen/Kompilieren	Strg+R		
	Hochladen	Strg+U		
	Hochladen mit Programmer	Strg+Umschalt+U		
	Kompilierte Binärdatei exportieren	Strg+Alt+S		
	Sketch-Ordner anzeigen	Strg+K		_
	Bibliothek einbinden	1	Bibliotheken verwalten]
	Datei hinzufügen		ZIP-Ribliothek binzufügen	2

Darin suchen wir nach "DHT" und wählen das DHT sensor library Paket von Adafruit aus und installieren es.

Typ Alle 👻 Them	a Alle 👻	DHT							
DHT sensor library by Adafruit Arduino library for DHT11, DHT22, etc Temp & Humidity Sensors Arduino library for DHT11, DHT22, etc Temp & Humidity Sensors									
More info		Version 1.3.0 - Installieren							

Anschließend steht neben dem Paket INSTALLED.

DHT sensor library by Adafruit Version 1.2.3 INSTALLED	
Arduino library for DHT11, DHT22, etc Temp & Humidity Sensors Arduino library for DHT11, DHT22, etc Temp & Humidity Sensors	5
More info	

Nun können wir unseren Code schreiben:

Dazu starten wir unter Datei > Beispiele > DHT sensor library > DHTtester

Date	i Bearbeiten Sketo	ch Werkzeuge Hilfe			
	Neu Öffnen Letzte öffnen Sketchbook	Strg+N Strg+O	05.Control 06.Sensors 07.Display 08.Strings	* * * *	
	Beispiele Schließen Speichern	Strg+W Strg+S Strg+LImschalt+S	09.USB 10.StarterKit_BasicKit 11.ArduinoISP	* * *	
	Seite einrichten	Strg+Umschalt+P	Beispiele aus eigenen Bibliotheken DHT sensor library	•	N.

Den Code müssen wir nur noch an unseren Sensor anpassen:

#define DHTPIN 7
#define DHTTYPE DHT11

Ansonsten kann der Code unverändert bleiben:

Hier der Code ohne Kommentare

```
#include "DHT.h"
#define DHTPIN 7
#define DHTTYPE DHT11 // DHT 11
//#define DHTTYPE DHT22 // DHT 22 (AM2302), AM2321
DHT dht(DHTPIN, DHTTYPE);
void setup() {
 Serial.begin(9600);
  Serial.println("DHTxx test!");
  dht.begin();
}
void loop() {
  delay(2000);
  float h = dht.readHumidity();
  float t = dht.readTemperature();
  float f = dht.readTemperature(true);
  if (isnan(h) || isnan(t) || isnan(f)) {
    Serial.println("Failed to read from DHT sensor!");
    return;
  }
  float hif = dht.computeHeatIndex(f, h);
  float hic = dht.computeHeatIndex(t, h, false);
  Serial.print("Humidity: ");
  Serial.print(h);
  Serial.print(" %\t");
  Serial.print("Temperature: ");
  Serial.print(t);
  Serial.print(" *C ");
  Serial.print(f);
  Serial.print(" *F\t");
  Serial.print("Heat index: ");
  Serial.print(hic);
  Serial.print(" *C ");
  Serial.print(hif);
  Serial.println(" *F");
}
```

Der Code wird wieder Verifiziert 🗹 und Hochgeladen 💽

Nun werden über den SerialMonitor alle 2 Sekunden die Temperatur und Luftfeuchtigkeit ausgegeben.

Az-Delivery

💿 COM10

L

DHTxx test	t!												
Humidity:	28.00	*	Temperature:	24.00	*C	75.20	*F	Heat	index:	23.19	*C	73.74	*F
Humidity:	28.00	8	Temperature:	23.00	*C	73.40	*F	Heat	index:	22.09	*C	71.76	*F
Humidity:	28.00	8	Temperature:	23.00	*C	73.40	*F	Heat	index:	22.09	*C	71.76	*F
Humidity:	28.00	8	Temperature:	23.00	*C	73.40	*F	Heat	index:	22.09	*C	71.76	*F
Humidity:	28.00	8	Temperature:	23.00	*C	73.40	*F	Heat	index:	22.09	*C	71.76	*F
Humidity:	28.00	8	Temperature:	23.00	*C	73.40	*F	Heat	index:	22.09	*C	71.76	*F
Humidity:	28.00	8	Temperature:	23.00	*C	73.40	*F	Heat	index:	22.09	*C	71.76	*F
Humidity:	28.00	8	Temperature:	23.00	*C	73.40	*F	Heat	index:	22.09	*C	71.76	*F
Humidity:	28.00	8	Temperature:	23.00	*C	73.40	*F	Heat	index:	22.09	*C	71.76	*F
Humidity:	28.00	8	Temperature:	23.00	*C	73.40	*F	Heat	index:	22.09	*C	71.76	*F
Humidity:	28.00	8	Temperature:	23.00	*C	73.40	*F	Heat	index:	22.09	*C	71.76	*F
Humidity:	28.00	8	Temperature:	23.00	*C	73.40	*F	Heat	index:	22.09	*C	71.76	*F
Humidity:	28.00	8	Temperature:	23.00	*C	73.40	*F	Heat	index:	22.09	*C	71.76	*F
Humidity:	28.00	8	Temperature:	23.00	*C	73.40	*F	Heat	index:	22.09	*C	71.76	*F
Humidity:	28.00	8	Temperature:	23.00	*C	73.40	*F	Heat	index:	22.09	*C	71.76	*F
Humidity:	28.00	8	Temperature:	23.00	*C	73.40	*F	Heat	index:	22.09	*C	71.76	*F
Humidity:	28.00	8	Temperature:	23.00	*C	73.40	*F	Heat	index:	22.09	*C	71.76	*F
Humidity:	28.00	8	Temperature:	23.00	*C	73.40	*F	Heat	index:	22.09	*C	71.76	*F
Humidity:	29.00	8	Temperature:	23.00	*C	73.40	*F	Heat	index:	22.11	*C	71.80	*F
Humidity:	29.00	8	Temperature:	23.00	*C	73.40	*F	Heat	index:	22.11	*C	71.80	*F
Humidity:	29.00	8	Temperature:	23.00	*C	73.40	*F	Heat	index:	22.11	*C	71.80	*F
Humidity:	29.00	8	Temperature:	23.00	*C	73.40	*F	Heat	index:	22.11	*C	71.80	*F
Humidity:	28.00	8	Temperature:	23.00	*C	73.40	*F	Heat	index:	22.09	*C	71.76	*F
Humidity:	29.00	8	Temperature:	23.00	*C	73.40	*F	Heat	index:	22.11	*C	71.80	*F
Humidity:	28.00	8	Temperature:	23.00	*C	73.40	*F	Heat	index:	22.09	*C	71.76	*F
Humidity:	28.00	8	Temperature:	23.00	*C	73.40	*F	Heat	index:	22.09	*C	71.76	*F
Humidity:	28.00	8	Temperature:	23.00	*C	73.40	*F	Heat	index:	22.09	*C	71.76	*F
Humidity:	28.00	8	Temperature:	23.00	*C	73.40	*F	Heat	index:	22.09	*C	71.76	*F

Ist der Sensor falsch angeschlossen oder verliert die Verbindung, dann kommt die Fehlermeldung: Failed to read from DHT sensor.

💿 СОМ10										-	-
Humidity: 29.00 %	Temperature:	23.00	*C 7	3.40	*F	Heat	index:	22.11	*C	71.80	*F
Humidity: 29.00 %	Temperature:	23.00	*C 73	3.40	*F	Heat	index:	22.11	*C	71.80	*F
Humidity: 29.00 %	Temperature:	23.00	*C 73	3.40	*F	Heat	index:	22.11	*C	71.80	*F
Humidity: 28.00 %	Temperature:	23.00	*C 73	3.40	*F	Heat	index:	22.09	*C	71.76	*F
Humidity: 31.00 %	Temperature:	23.00	*C 73	3.40	*F	Heat	index:	22.16	*C	71.90	*F
Humidity: 30.00 %	Temperature:	23.00	*C 73	3.40	*F	Heat	index:	22.14	*C	71.85	*F
Failed to read from DHT	sensor!										
Failed to read from DHT	sensor!										
Failed to read from DHT	sensor!										
Failed to read from DHT	sensor!										
Failed to read from DHT	sensor!										

Verdrahten des Moduls

VCC wird mit 5V am Arduino verbunden GND wird mit GND verbunden DATA wird mit D7 verbunden

Software für den DS18B20:

Für den Sensor benötigen wir noch eine Bibliothek. Diese installieren wir über die Bibliotheksverwaltung:

Sketch > Bibliothek einbinden > Bibliotheken verwalten

Sketo	h Werkzeuge Hilfe		
	Überprüfen/Kompilieren	Strg+R	
	Hochladen	Strg+U	
	Hochladen mit Programmer	Strg+Umschalt+U	
	Kompilierte Binärdatei exportieren	Strg+Alt+S	
	Sketch-Ordner anzeigen	Strg+K	
	Bibliothek einbinden	1	Bibliotheken verwalten
	Datei hinzufügen		7IP-Bibliothek binzufügen

Darin suchen wir nach "DS18B20" und wählen das DallasTemperature Paket aus und installieren es.

DallasTemperature by Miles Burton , Tim Newsome , Guil Barros , Rob Tillaart Arduino Library for Dallas Temperature ICs Supports DS18820, DS18S20, DS1822, DS1820 More info	
	Version 3.8.0 - Installieren

Anschließend steht neben dem Paket INSTALLED.

💿 Bibliotheksverwalter			×
Typ Alle 🔻 Th	hema Alle 👻	DS18820	
DallasTemperature b Arduino Library for D <u>More info</u>	oy Miles Burton , Tim Newso Dallas Temperature ICs Sup	ome , Guil Barros , Rob Tillaart Version 3.7.9 INSTALLED pports DS18B20, DS18S20, DS1822, DS1820	^

Nun können wir unseren Code schreiben,

dazu starten wir unter Datei > Beispiele >DallasTemperatur > Single

Datei Bearbeiten Sketcl Neu Öffnen	h Werkzeuge Hilfe Strg+N Stra+O	10.StarterKit_BasicKit 11.ArduinoISP	1	oneWireSearch setUserData		
Letzte öffnen Sketchbook	Be Be	Beispiele für Arduino/Genuino Uno EEPROM		Single Tester		
Beispiele	Stra+W	SoftwareSerial SPI		TwoPin_DS18B20		
Speichern	Strg+S	Wire	•	UserDataDemo UserDataWriteBatch		
Speichern unter	Strg+Umschalt+S	Beispiele aus eigenen Bibliotheken		WaitForConversion		
Seite einrichten	Strg+Umschalt+P	DallasTemperature	•	WaitForConversion2		

Den Code den wir bekommen können wir ohne Änderungen auf den Arduino laden.

```
#include <OneWire.h>
#include <DallasTemperature.h>
#define ONE WIRE BUS 2
OneWire oneWire (ONE WIRE BUS);
DallasTemperature sensors(&oneWire);
DeviceAddress insideThermometer;
void setup(void)
{
  Serial.begin(9600);
  Serial.println("Dallas Temperature IC Control Library Demo");
  Serial.print("Locating devices...");
  sensors.begin();
  Serial.print("Found ");
  Serial.print(sensors.getDeviceCount(), DEC);
  Serial.println(" devices.");
  Serial.print("Parasite power is: ");
  if (sensors.isParasitePowerMode()) Serial.println("ON");
  else Serial.println("OFF");
  Serial.print("Device 0 Address: ");
  printAddress(insideThermometer);
  Serial.println();
  sensors.setResolution(insideThermometer, 9);
  Serial.print("Device 0 Resolution: ");
  Serial.print(sensors.getResolution(insideThermometer), DEC);
  Serial.println();
}
void printTemperature(DeviceAddress deviceAddress)
{
  float tempC = sensors.getTempC(deviceAddress);
 Serial.print("Temp C: ");
 Serial.print(tempC);
 Serial.print(" Temp F: ");
  Serial.println(DallasTemperature::toFahrenheit(tempC));
}
void loop(void)
{
 Serial.print("Requesting temperatures...");
 sensors.requestTemperatures();
 Serial.println("DONE");
  printTemperature(insideThermometer);
}
void printAddress(DeviceAddress deviceAddress)
{
  for (uint8 t i = 0; i < 8; i++)</pre>
  {
    if (deviceAddress[i] < 16) Serial.print("0");</pre>
    Serial.print(deviceAddress[i], HEX);
  }
}
```

Der Code wird wieder Verifiziert 🗹 und Hochgeladen 🕑

Nun wird über den SerialMonitor die Temperatur ausgegeben.

Zu Beginn werden noch die Adresse und ein paar Informationen über den Sensor ausgegeben.

💿 COM10

```
Dallas Temperature IC Control Library Demo
Locating devices...Found 1 devices.
Parasite power is: OFF
Device 0 Address: 2861641233BADE4C
Device 0 Resolution: 12
Requesting temperatures...DONE
Temp C: 24.00 Temp F: 75.20
Requesting temperatures...DONE
Temp C: 23.94 Temp F: 75.09
Requesting temperatures...DONE
```

Du hast es geschafft, deine Sensoren und Aktoren kannst du in deinen Projekten einsetzen und programmieren.

Ab jetzt heißt es lernen und eigene Projekte verwirklichen.

Und für mehr Hardware sorgt natürlich dein Online-Shop auf:

https://az-delivery.de

Viel Spaß!

Impressum https://az-delivery.de/pages/about-us